
4.Process Modeling

The goal for this chapter is to present the background and specific analysis techniques
needed to construct a statistical model that describes a particular scientific or
engineering process. The types of models discussed in this chapter are limited to those
based on an explicit mathematical function. These types of models can be used for
prediction of process outputs, for calibration, or for process optimization.
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4. Process Modeling

4.1. Introduction to Process Modeling

Overview of
Section 4.1

The goal for this section is to give the big picture of function-based
process modeling. This includes a discussion of what process modeling
is, the goals of process modeling, and a comparison of the different
statistical methods used for model building. Detailed information on
how to collect data, construct appropriate models, interpret output, and
use process models is covered in the following sections. The final
section of the chapter contains case studies that illustrate the general
information presented in the first five sections using data from a variety
of scientific and engineering applications.

Contents of
Section 4.1

What is process modeling?1.  

What terminology do statisticians use to describe process models?2.  

What are process models used for?

Estimation1.  

Prediction2.  

Calibration3.  

Optimization4.  

3.  

What are some of the statistical methods for model building?

Linear Least Squares Regression1.  

Nonlinear Least Squares Regression2.  

Weighted Least Squares Regression3.  

LOESS (aka LOWESS)4.  

4.  
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4. Process Modeling
4.1. Introduction to Process Modeling

4.1.1.What is process modeling?

Basic
Definition

Process modeling is the concise description of the total variation in one quantity, , by
partitioning it into

a deterministic component given by a mathematical function of one or more other
quantities,  , plus

1.  

a random component that follows a particular probability distribution.2.  

Example For example, the total variation of the measured pressure of a fixed amount of a gas in a tank can
be described by partitioning the variability into its deterministic part, which is a function of the
temperature of the gas, plus some left-over random error. Charles' Law states that the pressure of
a gas is proportional to its temperature under the conditions described here, and in this case most
of the variation will be deterministic. However, due to measurement error in the pressure gauge,
the relationship will not be purely deterministic. The random errors cannot be characterized
individually, but will follow some probability distribution that will describe the relative
frequencies of occurrence of different-sized errors.

Graphical
Interpretation

Using the example above, the definition of process modeling can be graphically depicted like
this:

4.1.1. What is process modeling?
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Click Figure
for Full-Sized
Copy

The top left plot in the figure shows pressure data that vary deterministically with temperature
except for a small amount of random error. The relationship between pressure and temperature is
a straight line, but not a perfect straight line. The top row plots on the right-hand side of the
equals sign show a partitioning of the data into a perfect straight line and the remaining
"unexplained" random variation in the data (note the different vertical scales of these plots). The
plots in the middle row of the figure show the deterministic structure in the data again and a
histogram of the random variation. The histogram shows the relative frequencies of observing
different-sized random errors. The bottom row of the figure shows how the relative frequencies of
the random errors can be summarized by a (normal) probability distribution.

An Example
from a More
Complex
Process

Of course, the straight-line example is one of the simplest functions used for process modeling.
Another example is shown below. The concept is identical to the straight-line example, but the
structure in the data is more complex. The variation in  is partitioned into a deterministic part,
which is a function of another variable, , plus some left-over random variation. (Again note the
difference in the vertical axis scales of the two plots in the top right of the figure.) A probability
distribution describes the leftover random variation.

4.1.1. What is process modeling?
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An Example
with Multiple
Explanatory
Variables

The examples of process modeling shown above have only one explanatory variable but the
concept easily extends to cases with more than one explanatory variable. The three-dimensional
perspective plots below show an example with two explanatory variables. Examples with three or
more explanatory variables are exactly analogous, but are difficult to show graphically.

4.1.1. What is process modeling?
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4. Process Modeling
4.1. Introduction to Process Modeling

4.1.2.What terminology do statisticians use
to describe process models?

Model
Components

There are three main parts to every process model. These are

the response variable, usually denoted by ,1.  

the mathematical function, usually denoted as , and2.  

the random errors, usually denoted by .3.  

Form of
Model

The general form of the model is

.

All process models discussed in this chapter have this general form. As
alluded to earlier, the random errors that are included in the model make
the relationship between the response variable and the predictor
variables a "statistical" one, rather than a perfect deterministic one. This
is because the functional relationship between the response and
predictors holds only on average, not for each data point.

Some of the details about the different parts of the model are discussed
below, along with alternate terminology for the different components of
the model.

Response
Variable

The response variable, , is a quantity that varies in a way that we hope
to be able to summarize and exploit via the modeling process. Generally
it is known that the variation of the response variable is systematically
related to the values of one or more other variables before the modeling
process is begun, although testing the existence and nature of this
dependence is part of the modeling process itself.

4.1.2. What terminology do statisticians use to describe process models?
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Mathematical
Function

The mathematical function consists of two parts. These parts are the
predictor variables, , and the parameters, . The
predictor variables are observed along with the response variable. They
are the quantities described on the previous page as inputs to the

mathematical function, . The collection of all of the predictor

variables is denoted by  for short.

The parameters are the quantities that will be estimated during the
modeling process. Their true values are unknown and unknowable,
except in simulation experiments. As for the predictor variables, the
collection of all of the parameters is denoted by  for short.

The parameters and predictor variables are combined in different forms
to give the function used to describe the deterministic variation in the
response variable. For a straight line with an unknown intercept and
slope, for example, there are two parameters and one predictor variable

.

For a straight line with a known slope of one, but an unknown intercept,
there would only be one parameter

.

For a quadratic surface with two predictor variables, there are six
parameters for the full model.

.

4.1.2. What terminology do statisticians use to describe process models?
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Random
Error

Like the parameters in the mathematical function, the random errors are
unknown. They are simply the difference between the data and the
mathematical function. They are assumed to follow a particular
probability distribution, however, which is used to describe their
aggregate behavior. The probability distribution that describes the errors
has a mean of zero and an unknown standard deviation, denoted by ,
that is another parameter in the model, like the 's.

Alternate
Terminology

Unfortunately, there are no completely standardardized names for the
parts of the model discussed above. Other publications or software may
use different terminology. For example, another common name for the
response variable is "dependent variable". The response variable is also
simply called "the response" for short. Other names for the predictor
variables include "explanatory variables", "independent variables",
"predictors" and "regressors". The mathematical function used to
describe the deterministic variation in the response variable is sometimes
called the "regression function", the "regression equation", the
"smoothing function", or the "smooth".

Scope of
"Model"

In its correct usage, the term "model" refers to the equation above and
also includes the underlying assumptions made about the probability
distribution used to describe the variation of the random errors. Often,
however, people will also use the term "model" when referring
specifically to the mathematical function describing the deterministic
variation in the data. Since the function is part of the model, the more
limited usage is not wrong, but it is important to remember that the term
"model" might refer to more than just the mathematical function.

4.1.2. What terminology do statisticians use to describe process models?
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4. Process Modeling
4.1. Introduction to Process Modeling

4.1.3.What are process models used for?

Three Main
Purposes

Process models are used for four main purposes:

estimation,1.  

prediction,2.  

calibration, and3.  

optimization.4.  

The rest of this page lists brief explanations of the different uses of
process models. More detailed explanations of the uses for process
models are given in the subsections of this section listed at the bottom
of this page.

Estimation The goal of estimation is to determine the value of the regression
function (i.e., the average value of the response variable), for a
particular combination of the values of the predictor variables.
Regression function values can be estimated for any combination of
predictor variable values, including values for which no data have been
measured or observed. Function values estimated for points within the
observed space of predictor variable values are sometimes called
interpolations. Estimation of regression function values for points
outside the observed space of predictor variable values, called
extrapolations, are sometimes necessary, but require caution.

Prediction The goal of prediction is to determine either

the value of a new observation of the response variable, or1.  

the values of a specified proportion of all future observations of
the response variable

2.  

for a particular combination of the values of the predictor variables.
Predictions can be made for any combination of predictor variable
values, including values for which no data have been measured or
observed. As in the case of estimation, predictions made outside the
observed space of predictor variable values are sometimes necessary,
but require caution.

4.1.3. What are process models used for?
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Calibration The goal of calibration is to quantitatively relate measurements made
using one measurement system to those of another measurement system.
This is done so that measurements can be compared in common units or
to tie results from a relative measurement method to absolute units.

Optimization Optimization is performed to determine the values of process inputs that
should be used to obtain the desired process output. Typical
optimization goals might be to maximize the yield of a process, to
minimize the processing time required to fabricate a product, or to hit a
target product specification with minimum variation in order to
maintain specified tolerances.

Further
Details

Estimation1.  

Prediction2.  

Calibration3.  

Optimization4.  

4.1.3. What are process models used for?
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.3. What are process models used for?

4.1.3.1.Estimation

More on
Estimation

As mentioned on the preceding page, the primary goal of estimation is to determine the value of
the regression function that is associated with a specific combination of predictor variable values.
The estimated values are computed by plugging the value(s) of the predictor variable(s) into the
regression equation, after estimating the unknown parameters from the data. This process is
illustrated below using the Pressure/Temperature example from a few pages earlier.

Example Suppose in this case the predictor variable value of interest is a temperature of 47 degrees.
Computing the estimated value of the regression function using the equation

yields an estimated average pressure of 192.4655.

4.1.3.1. Estimation
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Of course, if the pressure/temperature experiment were repeated, the estimates of the parameters
of the regression function obtained from the data would differ slightly each time because of the
randomness in the data and the need to sample a limited amount of data. Different parameter
estimates would, in turn, yield different estimated values. The plot below illustrates the type of
slight variation that could occur in a repeated experiment.

Estimated
Value from
a Repeated
Experiment

4.1.3.1. Estimation
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Uncertainty
of the
Estimated
Value

A critical part of estimation is an assessment of how much an estimated value will fluctuate due
to the noise in the data. Without that information there is no basis for comparing an estimated
value to a target value or to another estimate. Any method used for estimation should include an
assessment of the uncertainty in the estimated value(s). Fortunately it is often the case that the
data used to fit the model to a process can also be used to compute the uncertainty of estimated
values obtained from the model. In the pressure/temperature example a confidence interval for the
value of the regresion function at 47 degrees can be computed from the data used to fit the model.
The plot below shows a 99% confidence interval produced using the original data. This interval
gives the range of plausible values for the average pressure for a temperature of 47 degrees based
on the parameter estimates and the noise in the data.

99%
Confidence
Interval for
Pressure at
T=47
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Length of
Confidence
Intervals

Because the confidence interval is an interval for the value of the regression function, the
uncertainty only includes the noise that is inherent in the estimates of the regression parameters.
The uncertainty in the estimated value can be less than the uncertainty of a single measurement
from the process because the data used to estimate the unknown parameters is essentially
averaged (in a way that depends on the statistical method being used) to determine each
parameter estimate. This "averaging" of the data tends to cancel out errors inherent in each
individual observed data point. The noise in the this type of result is generally less than the noise
in the prediction of one or more future measurements, which must account for both the
uncertainty in the estimated parameters and the uncertainty of the new measurement.

More Info For more information on the interpretation and computation confidence, intervals see Section 5.1

4.1.3.1. Estimation
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.3. What are process models used for?

4.1.3.2.Prediction

More on
Prediction

As mentioned earlier, the goal of prediction is to determine future value(s) of the response
variable that are associated with a specific combination of predictor variable values. As in
estimation, the predicted values are computed by plugging the value(s) of the predictor variable(s)
into the regression equation, after estimating the unknown parameters from the data. The
difference between estimation and prediction arises only in the computation of the uncertainties.
These differences are illustrated below using the Pressure/Temperature example in parallel with
the example illustrating estimation.

Example Suppose in this case the predictor variable value of interest is a temperature of 47 degrees.
Computing the predicted value using the equation

yields a predicted pressure of 192.4655.

4.1.3.2. Prediction

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd132.htm (1 of 5) [11/14/2003 5:50:16 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Of course, if the pressure/temperature experiment were repeated, the estimates of the parameters
of the regression function obtained from the data would differ slightly each time because of the
randomness in the data and the need to sample a limited amount of data. Different parameter
estimates would, in turn, yield different predicted values. The plot below illustrates the type of
slight variation that could occur in a repeated experiment.

Predicted
Value from
a Repeated
Experiment
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Prediction
Uncertainty

A critical part of prediction is an assessment of how much a predicted value will fluctuate due to
the noise in the data. Without that information there is no basis for comparing a predicted value to
a target value or to another prediction. As a result, any method used for prediction should include
an assessment of the uncertainty in the predicted value(s). Fortunately it is often the case that the
data used to fit the model to a process can also be used to compute the uncertainty of predictions
from the model. In the pressure/temperature example a prediction interval for the value of the
regresion function at 47 degrees can be computed from the data used to fit the model. The plot
below shows a 99% prediction interval produced using the original data. This interval gives the
range of plausible values for a single future pressure measurement observed at a temperature of
47 degrees based on the parameter estimates and the noise in the data.

99%
Prediction
Interval for
Pressure at
T=47
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Length of
Prediction
Intervals

Because the prediction interval is an interval for the value of a single new measurement from the
process, the uncertainty includes the noise that is inherent in the estimates of the regression
parameters and the uncertainty of the new measurement. This means that the interval for a new
measurement will be wider than the confidence interval for the value of the regression function.
These intervals are called prediction intervals rather than confidence intervals because the latter
are for parameters, and a new measurement is a random variable, not a parameter.

Tolerance
Intervals

Like a prediction interval, a tolerance interval brackets the plausible values of new measurements
from the process being modeled. However, instead of bracketing the value of a single
measurement or a fixed number of measurements, a tolerance interval brackets a specified
percentage of all future measurements for a given set of predictor variable values. For example, to
monitor future pressure measurements at 47 degrees for extreme values, either low or high, a
tolerance interval that brackets 98% of all future measurements with high confidence could be
used. If a future value then fell outside of the interval, the system would then be checked to
ensure that everything was working correctly. A 99% tolerance interval that captures 98% of all
future pressure measurements at a temperature of 47 degrees is 192.4655 +/- 14.5810. This
interval is wider than the prediction interval for a single measurement because it is designed to
capture a larger proportion of all future measurements. The explanation of tolerance intervals is
potentially confusing because there are two percentages used in the description of the interval.
One, in this case 99%, describes how confident we are that the interval will capture the quantity
that we want it to capture. The other, 98%, describes what the target quantity is, which in this
case that is 98% of all future measurements at T=47 degrees.

4.1.3.2. Prediction
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More Info For more information on the interpretation and computation of prediction and tolerance intervals,
see Section 5.1.

4.1.3.2. Prediction
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.3. What are process models used for?

4.1.3.3.Calibration

More on
Calibration

As mentioned in the page introducing the different uses of process models, the goal of calibration
is to quantitatively convert measurements made on one of two measurement scales to the other
measurement scale. The two scales are generally not of equal importance, so the conversion
occurs in only one direction. The primary measurement scale is usually the scientifically relevant
scale and measurements made directly on this scale are often the more precise (relatively) than
measurements made on the secondary scale. A process model describing the relationship between
the two measurement scales provides the means for conversion. A process model that is
constructed primarily for the purpose of calibration is often referred to as a "calibration curve". A
graphical depiction of the calibration process is shown in the plot below, using the example
described next.

Example Thermocouples are a common type of temperature measurement device that is often more
practical than a thermometer for temperature assessment. Thermocouples measure temperature in
terms of voltage, however, rather than directly on a temperature scale. In addition, the response of
a particular thermocouple depends on the exact formulation of the metals used to construct it,
meaning two thermocouples will respond somewhat differently under identical measurement
conditions. As a result, thermocouples need to be calibrated to produce interpretable measurement
information. The calibration curve for a thermocouple is often constructed by comparing
thermocouple output to relatively precise thermometer data. Then, when a new temperature is
measured with the thermocouple, the voltage is converted to temperature terms by plugging the
observed voltage into the regression equation and solving for temperature.

The plot below shows a calibration curve for a thermocouple fit with a locally quadratic model
using a method called LOESS. Traditionally, complicated, high-degree polynomial models have
been used for thermocouple calibration, but locally linear or quadratic models offer better
computational stability and more flexibility. With the locally quadratic model the solution of the
regression equation for temperature is done numerically rather than analytically, but the concept
of calibration is identical regardless of which type of model is used. It is important to note that the
thermocouple measurements, made on the secondary measurement scale, are treated as the
response variable and the more precise thermometer results, on the primary scale, are treated as
the predictor variable because this best satisfies the underlying assumptions of the analysis.

4.1.3.3. Calibration
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Thermocouple
Calibration

Just as in estimation or prediction, if the calibration experiment were repeated, the results would
vary slighly due to the randomness in the data and the need to sample a limited amount of data
from the process. This means that an uncertainty statement that quantifies how much the results
of a particular calibration could vary due to randomness is necessary. The plot below shows what
would happen if the thermocouple calibration were repeated under conditions identical to the first
experiment.

Calibration
Result from
Repeated
Experiment
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Calibration
Uncertainty

Again, as with prediction, the data used to fit the process model can also be used to determine the
uncertainty in the calibration. Both the variation in the estimated model parameters and in the
new voltage observation need to be accounted for. This is similar to uncertainty for the prediction
of a new measurement. In fact, calibration intervals are computed by solving for the predictor
variable value in the formulas for a prediction interval end points. The plot below shows a 99%
calibration interval for the original calibration data used in the first plot on this page. The area of
interest in the plot has been magnified so the endpoints of the interval can be visually
differentiated. The calibration interval is 387.3748 +/- 0.307 degrees Celsius.

4.1.3.3. Calibration
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In almost all calibration applications the ultimate quantity of interest is the true value of the
primary-scale measurement method associated with a measurement made on the secondary scale.
As a result, there are no analogs of the prediction interval or tolerance interval in calibration.

More Info More information on the construction and interpretation of calibration intervals can be found in
Section 5.2 of this chapter. There is also more information on calibration, especially "one-point"
calibrations and other special cases, in Section 3 of Chapter 2: Measurement Process
Characterization.

4.1.3.3. Calibration
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.3. What are process models used for?

4.1.3.4.Optimization

More on
Optimization

As mentioned earlier, the goal of optimization is to determine the necessary process input values
to obtain a desired output. Like calibration, optimization involves substitution of an output value
for the response variable and solving for the associated predictor variable values. The process
model is again the link that ties the inputs and output together. Unlike calibration and prediction,
however, successful optimization requires a cause-and-effect relationship between the predictors
and the response variable. Designed experiments, run in a randomized order, must be used to
ensure that the process model represents a cause-and-effect relationship between the variables.
Quadratic models are typically used, along with standard calculus techniques for finding
minimums and maximums, to carry out an optimization. Other techniques can also be used,
however. The example discussed below includes a graphical depiction of the optimization
process.

Example In a manufacturing process that requires a chemical reaction to take place, the temperature and
pressure under which the process is carried out can affect reaction time. To maximize the
throughput of this process, an optimization experiment was carried out in the neighborhood of the
conditions felt to be best, using a central composite design with 13 runs. Calculus was used to
determine the input values associated with local extremes in the regression function. The plot
below shows the quadratic surface that was fit to the data and conceptually how the input values
associated with the maximum throughput are found.

4.1.3.4. Optimization

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd134.htm (1 of 4) [11/14/2003 5:50:16 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm


As with prediction and calibration, randomness in the data and the need to sample data from the
process affect the results. If the optimization experiment were carried out again under identical
conditions, the optimal input values computed using the model would be slightly different. Thus,
it is important to understand how much random variability there is in the results in order to
interpret the results correctly.

Optimization
Result from
Repeated
Experiment

4.1.3.4. Optimization
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Optimization
Uncertainty

As with prediction and calibration, the uncertainty in the input values estimated to maximize
throughput can also be computed from the data used to fit the model. Unlike prediction or
calibration, however, optimization almost always involves simultaneous estimation of several
quantities, the values of the process inputs. As a result, we will compute a joint confidence region
for all of the input values, rather than separate uncertainty intervals for each input. This
confidence region will contain the complete set of true process inputs that will maximize
throughput with high probability. The plot below shows the contours of equal throughput on a
map of various possible input value combinations. The solid contours show throughput while the
dashed contour in the center encloses the plausible combinations of input values that yield
optimum results. The "+" marks the estimated optimum value. The dashed region is a 95% joint
confidence region for the two process inputs. In this region the throughput of the process will be
approximately 217 units/hour.

4.1.3.4. Optimization
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More Info Computational details for optimization are primarily presented in Chapter 5: Process
Improvement along with material on appropriate experimental designs for optimization. Section
5.5.3. specifically focuses on optimization methods and their associated uncertainties.

4.1.3.4. Optimization
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4. Process Modeling
4.1. Introduction to Process Modeling

4.1.4.What are some of the different
statistical methods for model
building?

Selecting an
Appropriate
Stat
Method:
General
Case

For many types of data analysis problems there are no more than a
couple of general approaches to be considered on the route to the
problem's solution. For example, there is often a dichotomy between
highly-efficient methods appropriate for data with noise from a normal
distribution and more general methods for data with other types of
noise. Within the different approaches for a specific problem type, there
are usually at most a few competing statistical tools that can be used to
obtain an appropriate solution. The bottom line for most types of data
analysis problems is that selection of the best statistical method to solve
the problem is largely determined by the goal of the analysis and the
nature of the data.

Selecting an
Appropriate
Stat
Method:
Modeling

Model building, however, is different from most other areas of statistics
with regard to method selection. There are more general approaches and
more competing techniques available for model building than for most
other types of problems. There is often more than one statistical tool that
can be effectively applied to a given modeling application. The large
menu of methods applicable to modeling problems means that there is
both more opportunity for effective and efficient solutions and more
potential to spend time doing different analyses, comparing different
solutions and mastering the use of different tools. The remainder of this
section will introduce and briefly discuss some of the most popular and
well-established statistical techniques that are useful for different model
building situations.

Process
Modeling
Methods

Linear Least Squares Regression1.  

Nonlinear Least Squares Regression2.  

Weighted Least Squares Regression3.  

LOESS (aka LOWESS)4.  

4.1.4. What are some of the different statistical methods for model building?
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4.1.4. What are some of the different statistical methods for model building?
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.4. What are some of the different statistical methods for model building?

4.1.4.1.Linear Least Squares Regression

Modeling
Workhorse

Linear least squares regression is by far the most widely used
modeling method. It is what most people mean when they say they
have used "regression", "linear regression" or "least squares" to fit a
model to their data. Not only is linear least squares regression the
most widely used modeling method, but it has been adapted to a broad
range of situations that are outside its direct scope. It plays a strong
underlying role in many other modeling methods, including the other
methods discussed in this section: nonlinear least squares regression,
weighted least squares regression and LOESS.

Definition of a
Linear Least
Squares
Model

Used directly, with an appropriate data set, linear least squares
regression can be used to fit the data with any function of the form

in which

each explanatory variable in the function is multiplied by an
unknown parameter,

1.  

there is at most one unknown parameter with no corresponding
explanatory variable, and

2.  

all of the individual terms are summed to produce the final
function value.

3.  

In statistical terms, any function that meets these criteria would be
called a "linear function". The term "linear" is used, even though the
function may not be a straight line, because if the unknown parameters
are considered to be variables and the explanatory variables are
considered to be known coefficients corresponding to those
"variables", then the problem becomes a system (usually
overdetermined) of linear equations that can be solved for the values
of the unknown parameters. To differentiate the various meanings of
the word "linear", the linear models being discussed here are often

4.1.4.1. Linear Least Squares Regression
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said to be "linear in the parameters" or "statistically linear".

Why "Least
Squares"?

Linear least squares regression also gets its name from the way the
estimates of the unknown parameters are computed. The "method of
least squares" that is used to obtain parameter estimates was
independently developed in the late 1700's and the early 1800's by the
mathematicians Karl Friedrich Gauss, Adrien Marie Legendre and
(possibly) Robert Adrain [Stigler (1978)] [Harter (1983)] [Stigler
(1986)] working in Germany, France and America, respectively. In the
least squares method the unknown parameters are estimated by
minimizing the sum of the squared deviations between the data and
the model. The minimization process reduces the overdetermined
system of equations formed by the data to a sensible system of 
(where  is the number of parameters in the functional part of the
model) equations in  unknowns. This new system of equations is
then solved to obtain the parameter estimates. To learn more about
how the method of least squares is used to estimate the parameters,
see Section 4.4.3.1.

Examples of
Linear
Functions

As just mentioned above, linear models are not limited to being
straight lines or planes, but include a fairly wide range of shapes. For
example, a simple quadratic curve

is linear in the statistical sense. A straight-line model in 

or a polynomial in 

is also linear in the statistical sense because they are linear in the
parameters, though not with respect to the observed explanatory
variable, .

4.1.4.1. Linear Least Squares Regression
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Nonlinear
Model
Example

Just as models that are linear in the statistical sense do not have to be
linear with respect to the explanatory variables, nonlinear models can
be linear with respect to the explanatory variables, but not with respect
to the parameters. For example,

is linear in , but it cannot be written in the general form of a linear
model presented above. This is because the slope of this line is
expressed as the product of two parameters. As a result, nonlinear
least squares regression could be used to fit this model, but linear least
squares cannot be used. For further examples and discussion of
nonlinear models see the next section, Section 4.1.4.2.

Advantages of
Linear Least
Squares

Linear least squares regression has earned its place as the primary tool
for process modeling because of its effectiveness and completeness.

Though there are types of data that are better described by functions
that are nonlinear in the parameters, many processes in science and
engineering are well-described by linear models. This is because
either the processes are inherently linear or because, over short ranges,
any process can be well-approximated by a linear model.

The estimates of the unknown parameters obtained from linear least
squares regression are the optimal estimates from a broad class of
possible parameter estimates under the usual assumptions used for
process modeling. Practically speaking, linear least squares regression
makes very efficient use of the data. Good results can be obtained
with relatively small data sets.

Finally, the theory associated with linear regression is well-understood
and allows for construction of different types of easily-interpretable
statistical intervals for predictions, calibrations, and optimizations.
These statistical intervals can then be used to give clear answers to
scientific and engineering questions.

Disadvantages
of Linear
Least Squares

The main disadvantages of linear least squares are limitations in the
shapes that linear models can assume over long ranges, possibly poor
extrapolation properties, and sensitivity to outliers.

4.1.4.1. Linear Least Squares Regression
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Linear models with nonlinear terms in the predictor variables curve
relatively slowly, so for inherently nonlinear processes it becomes
increasingly difficult to find a linear model that fits the data well as
the range of the data increases. As the explanatory variables become
extreme, the output of the linear model will also always more extreme.
This means that linear models may not be effective for extrapolating
the results of a process for which data cannot be collected in the
region of interest. Of course extrapolation is potentially dangerous
regardless of the model type.

Finally, while the method of least squares often gives optimal
estimates of the unknown parameters, it is very sensitive to the
presence of unusual data points in the data used to fit a model. One or
two outliers can sometimes seriously skew the results of a least
squares analysis. This makes model validation, especially with respect
to outliers, critical to obtaining sound answers to the questions
motivating the construction of the model.

4.1.4.1. Linear Least Squares Regression
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.4. What are some of the different statistical methods for model building?

4.1.4.2.Nonlinear Least Squares
Regression

Extension of
Linear Least
Squares
Regression

Nonlinear least squares regression extends linear least squares
regression for use with a much larger and more general class of
functions. Almost any function that can be written in closed form can
be incorporated in a nonlinear regression model. Unlike linear
regression, there are very few limitations on the way parameters can
be used in the functional part of a nonlinear regression model. The
way in which the unknown parameters in the function are estimated,
however, is conceptually the same as it is in linear least squares
regression.

Definition of a
Nonlinear
Regression
Model

As the name suggests, a nonlinear model is any model of the basic
form

.

in which

the functional part of the model is not linear with respect to the
unknown parameters, , and

1.  

the method of least squares is used to estimate the values of the
unknown parameters.

2.  

4.1.4.2. Nonlinear Least Squares Regression
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Due to the way in which the unknown parameters of the function are
usually estimated, however, it is often much easier to work with
models that meet two additional criteria:

the function is smooth with respect to the unknown parameters,
and

3.  

the least squares criterion that is used to obtain the parameter
estimates has a unique solution.

4.  

These last two criteria are not essential parts of the definition of a
nonlinear least squares model, but are of practical importance.

Examples of
Nonlinear
Models

Some examples of nonlinear models include:

4.1.4.2. Nonlinear Least Squares Regression
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Advantages of
Nonlinear
Least Squares

The biggest advantage of nonlinear least squares regression over many
other techniques is the broad range of functions that can be fit.
Although many scientific and engineering processes can be described
well using linear models, or other relatively simple types of models,
there are many other processes that are inherently nonlinear. For
example, the strengthening of concrete as it cures is a nonlinear
process. Research on concrete strength shows that the strength
increases quickly at first and then levels off, or approaches an
asymptote in mathematical terms, over time. Linear models do not
describe processes that asymptote very well because for all linear
functions the function value can't increase or decrease at a declining
rate as the explanatory variables go to the extremes. There are many
types of nonlinear models, on the other hand, that describe the
asymptotic behavior of a process well. Like the asymptotic behavior
of some processes, other features of physical processes can often be
expressed more easily using nonlinear models than with simpler
model types.

Being a "least squares" procedure, nonlinear least squares has some of
the same advantages (and disadvantages) that linear least squares
regression has over other methods. One common advantage is
efficient use of data. Nonlinear regression can produce good estimates
of the unknown parameters in the model with relatively small data
sets. Another advantage that nonlinear least squares shares with linear
least squares is a fairly well-developed theory for computing
confidence, prediction and calibration intervals to answer scientific
and engineering questions. In most cases the probabilistic
interpretation of the intervals produced by nonlinear regression are
only approximately correct, but these intervals still work very well in
practice.

Disadvantages
of Nonlinear
Least Squares

The major cost of moving to nonlinear least squares regression from
simpler modeling techniques like linear least squares is the need to use
iterative optimization procedures to compute the parameter estimates.
With functions that are linear in the parameters, the least squares
estimates of the parameters can always be obtained analytically, while
that is generally not the case with nonlinear models. The use of
iterative procedures requires the user to provide starting values for the
unknown parameters before the software can begin the optimization.
The starting values must be reasonably close to the as yet unknown
parameter estimates or the optimization procedure may not converge.
Bad starting values can also cause the software to converge to a local
minimum rather than the global minimum that defines the least
squares estimates.

4.1.4.2. Nonlinear Least Squares Regression
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Disadvantages shared with the linear least squares procedure includes
a strong sensitivity to outliers. Just as in a linear least squares analysis,
the presence of one or two outliers in the data can seriously affect the
results of a nonlinear analysis. In addition there are unfortunately
fewer model validation tools for the detection of outliers in nonlinear
regression than there are for linear regression.

4.1.4.2. Nonlinear Least Squares Regression
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.4. What are some of the different statistical methods for model building?

4.1.4.3.Weighted Least Squares Regression

Handles
Cases Where
Data Quality
Varies

One of the common assumptions underlying most process modeling methods, including linear
and nonlinear least squares regression, is that each data point provides equally precise
information about the deterministic part of the total process variation. In other words, the standard
deviation of the error term is constant over all values of the predictor or explanatory variables.
This assumption, however, clearly does not hold, even approximately, in every modeling
application. For example, in the semiconductor photomask linespacing data shown below, it
appears that the precision of the linespacing measurements decreases as the line spacing
increases. In situations like this, when it may not be reasonable to assume that every observation
should be treated equally, weighted least squares can often be used to maximize the efficiency of
parameter estimation. This is done by attempting to give each data point its proper amount of
influence over the parameter estimates. A procedure that treats all of the data equally would give
less precisely measured points more influence than they should have and would give highly
precise points too little influence.

Linespacing
Measurement
Error Data

4.1.4.3. Weighted Least Squares Regression
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Model Types
and Weighted
Least Squares

Unlike linear and nonlinear least squares regression, weighted least squares regression is not
associated with a particular type of function used to describe the relationship between the process
variables. Instead, weighted least squares reflects the behavior of the random errors in the model;
and it can be used with functions that are either linear or nonlinear in the parameters. It works by
incorporating extra nonnegative constants, or weights, associated with each data point, into the
fitting criterion. The size of the weight indicates the precision of the information contained in the
associated observation. Optimizing the weighted fitting criterion to find the parameter estimates
allows the weights to determine the contribution of each observation to the final parameter
estimates. It is important to note that the weight for each observation is given relative to the
weights of the other observations; so different sets of absolute weights can have identical effects.

Advantages of
Weighted
Least Squares

Like all of the least squares methods discussed so far, weighted least squares is an efficient
method that makes good use of small data sets. It also shares the ability to provide different types
of easily interpretable statistical intervals for estimation, prediction, calibration and optimization.
In addition, as discussed above, the main advantage that weighted least squares enjoys over other
methods is the ability to handle regression situations in which the data points are of varying
quality. If the standard deviation of the random errors in the data is not constant across all levels
of the explanatory variables, using weighted least squares with weights that are inversely
proportional to the variance at each level of the explanatory variables yields the most precise
parameter estimates possible.

Disadvantages
of Weighted
Least Squares

The biggest disadvantage of weighted least squares, which many people are not aware of, is
probably the fact that the theory behind this method is based on the assumption that the weights
are known exactly. This is almost never the case in real applications, of course, so estimated
weights must be used instead. The effect of using estimated weights is difficult to assess, but
experience indicates that small variations in the the weights due to estimation do not often affect a
regression analysis or its interpretation. However, when the weights are estimated from small
numbers of replicated observations, the results of an analysis can be very badly and unpredictably
affected. This is especially likely to be the case when the weights for extreme values of the
predictor or explanatory variables are estimated using only a few observations. It is important to
remain aware of this potential problem, and to only use weighted least squares when the weights
can be estimated precisely relative to one another [Carroll and Ruppert (1988), Ryan (1997)].

Weighted least squares regression, like the other least squares methods, is also sensitive to the
effects of outliers. If potential outliers are not investigated and dealt with appropriately, they will
likely have a negative impact on the parameter estimation and other aspects of a weighted least
squares analysis. If a weighted least squares regression actually increases the influence of an
outlier, the results of the analysis may be far inferior to an unweighted least squares analysis.

Futher
Information

Further information on the weighted least squares fitting criterion can be found in Section 4.3.
Discussion of methods for weight estimation can be found in Section 4.5.

4.1.4.3. Weighted Least Squares Regression
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.4. What are some of the different statistical methods for model building?

4.1.4.4.LOESS (aka LOWESS)

Useful When

Unknown &
Complicated

LOESS is one of many "modern" modeling methods that build on
"classical" methods, such as linear and nonlinear least squares
regression. Modern regression methods are designed to address
situations in which the classical procedures do not perform well or
cannot be effectively applied without undue labor. LOESS combines
much of the simplicity of linear least squares regression with the
flexibility of nonlinear regression. It does this by fitting simple models
to localized subsets of the data to build up a function that describes the
deterministic part of the variation in the data, point by point. In fact,
one of the chief attractions of this method is that the data analyst is not
required to specify a global function of any form to fit a model to the
data, only to fit segments of the data.

The trade-off for these features is increased computation. Because it is
so computationally intensive, LOESS would have been practically
impossible to use in the era when least squares regression was being
developed. Most other modern methods for process modeling are
similar to LOESS in this respect. These methods have been
consciously designed to use our current computational ability to the
fullest possible advantage to achieve goals not easily achieved by
traditional approaches.

4.1.4.4. LOESS (aka LOWESS)
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Definition of a
LOESS Model

LOESS, originally proposed by Cleveland (1979) and further
developed by Cleveland and Devlin (1988), specifically denotes a
method that is (somewhat) more descriptively known as locally
weighted polynomial regression. At each point in the data set a
low-degree polynomial is fit to a subset of the data, with explanatory
variable values near the point whose response is being estimated. The
polynomial is fit using weighted least squares, giving more weight to
points near the point whose response is being estimated and less
weight to points further away. The value of the regression function for
the point is then obtained by evaluating the local polynomial using the
explanatory variable values for that data point. The LOESS fit is
complete after regression function values have been computed for
each of the n data points. Many of the details of this method, such as
the degree of the polynomial model and the weights, are flexible. The
range of choices for each part of the method and typical defaults are
briefly discussed next.

Localized
Subsets of
Data

The subsets of data used for each weighted least squares fit in LOESS
are determined by a nearest neighbors algorithm. A user-specified
input to the procedure called the "bandwidth" or "smoothing
parameter" determines how much of the data is used to fit each local
polynomial. The smoothing parameter, q, is a number between
(d+1)/n and 1, with d denoting the degree of the local polynomial. The
value of q is the proportion of data used in each fit. The subset of data
used in each weighted least squares fit is comprised of the nq
(rounded to the next largest integer) points whose explanatory
variables values are closest to the point at which the response is being
estimated.

q is called the smoothing parameter because it controls the flexibility
of the LOESS regression function. Large values of q produce the
smoothest functions that wiggle the least in response to fluctuations in
the data. The smaller q is, the closer the regression function will
conform to the data. Using too small a value of the smoothing
parameter is not desirable, however, since the regression function will
eventually start to capture the random error in the data. Useful values
of the smoothing parameter typically lie in the range 0.25 to 0.5 for
most LOESS applications.

4.1.4.4. LOESS (aka LOWESS)
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Degree of
Local
Polynomials

The local polynomials fit to each subset of the data are almost always
of first or second degree; that is, either locally linear (in the straight
line sense) or locally quadratic. Using a zero degree polynomial turns
LOESS into a weighted moving average. Such a simple local model
might work well for some situations, but may not always approximate
the underlying function well enough. Higher-degree polynomials
would work in theory, but yield models that are not really in the spirit
of LOESS. LOESS is based on the ideas that any function can be well
approximated in a small neighborhood by a low-order polynomial and
that simple models can be fit to data easily. High-degree polynomials
would tend to overfit the data in each subset and are numerically
unstable, making accurate computations difficult.

Weight
Function

As mentioned above, the weight function gives the most weight to the
data points nearest the point of estimation and the least weight to the
data points that are furthest away. The use of the weights is based on
the idea that points near each other in the explanatory variable space
are more likely to be related to each other in a simple way than points
that are further apart. Following this logic, points that are likely to
follow the local model best influence the local model parameter
estimates the most. Points that are less likely to actually conform to
the local model have less influence on the local model parameter
estimates.

The traditional weight function used for LOESS is the tri-cube weight
function,

.

However, any other weight function that satisfies the properties listed
in Cleveland (1979) could also be used. The weight for a specific
point in any localized subset of data is obtained by evaluating the
weight function at the distance between that point and the point of
estimation, after scaling the distance so that the maximum absolute
distance over all of the points in the subset of data is exactly one.

Examples A simple computational example is given here to further illustrate
exactly how LOESS works. A more realistic example, showing a
LOESS model used for thermocouple calibration, can be found in
Section 4.1.3.2

4.1.4.4. LOESS (aka LOWESS)
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Advantages of
LOESS

As discussed above, the biggest advantage LOESS has over many
other methods is the fact that it does not require the specification of a
function to fit a model to all of the data in the sample. Instead the
analyst only has to provide a smoothing parameter value and the
degree of the local polynomial. In addition, LOESS is very flexible,
making it ideal for modeling complex processes for which no
theoretical models exist. These two advantages, combined with the
simplicity of the method, make LOESS one of the most attractive of
the modern regression methods for applications that fit the general
framework of least squares regression but which have a complex
deterministic structure.

Although it is less obvious than for some of the other methods related
to linear least squares regression, LOESS also accrues most of the
benefits typically shared by those procedures. The most important of
those is the theory for computing uncertainties for prediction and
calibration. Many other tests and procedures used for validation of
least squares models can also be extended to LOESS models.

Disadvantages
of LOESS

Although LOESS does share many of the best features of other least
squares methods, efficient use of data is one advantage that LOESS
doesn't share. LOESS requires fairly large, densely sampled data sets
in order to produce good models. This is not really surprising,
however, since LOESS needs good empirical information on the local
structure of the process in order perform the local fitting. In fact, given
the results it provides, LOESS could arguably be more efficient
overall than other methods like nonlinear least squares. It may simply
frontload the costs of an experiment in data collection but then reduce
analysis costs.

Another disadvantage of LOESS is the fact that it does not produce a
regression function that is easily represented by a mathematical
formula. This can make it difficult to transfer the results of an analysis
to other people. In order to transfer the regression function to another
person, they would need the data set and software for LOESS
calculations. In nonlinear regression, on the other hand, it is only
necessary to write down a functional form in order to provide
estimates of the unknown parameters and the estimated uncertainty.
Depending on the application, this could be either a major or a minor
drawback to using LOESS.

4.1.4.4. LOESS (aka LOWESS)
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Finally, as discussed above, LOESS is a computational intensive
method. This is not usually a problem in our current computing
environment, however, unless the data sets being used are very large.
LOESS is also prone to the effects of outliers in the data set, like other
least squares methods. There is an iterative, robust version of LOESS
[Cleveland (1979)] that can be used to reduce LOESS' sensitivity to
outliers, but extreme outliers can still overcome even the robust
method.

4.1.4.4. LOESS (aka LOWESS)
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4. Process Modeling

4.2.Underlying Assumptions for Process
Modeling

Implicit
Assumptions
Underlie
Most
Actions

Most, if not all, thoughtful actions that people take are based on ideas,
or assumptions, about how those actions will affect the goals they want
to achieve. The actual assumptions used to decide on a particular course
of action are rarely laid out explicitly, however. Instead, they are only
implied by the nature of the action itself. Implicit assumptions are
inherent to process modeling actions, just as they are to most other types
of action. It is important to understand what the implicit assumptions are
for any process modeling method because the validity of these
assumptions affect whether or not the goals of the analysis will be met.

Checking
Assumptions
Provides
Feedback on
Actions

If the implicit assumptions that underlie a particular action are not true,
then that action is not likely to meet expectations either. Sometimes it is
abundantly clear when a goal has been met, but unfortunately that is not
always the case. In particular, it is usually not possible to obtain
immediate feedback on the attainment of goals in most process
modeling applications. The goals of process modeling, sucha as
answering a scientific or engineering question, depend on the
correctness of a process model, which can often only be directly and
absolutely determined over time. In lieu of immediate, direct feedback,
however, indirect information on the effectiveness of a process
modeling analysis can be obtained by checking the validity of the
underlying assumptions. Confirming that the underlying assumptions
are valid helps ensure that the methods of analysis were appropriate and
that the results will be consistent with the goals.

Overview of
Section 4.2

This section discusses the specific underlying assumptions associated
with most model-fitting methods. In discussing the underlying
assumptions, some background is also provided on the consequences of
stopping the modeling process short of completion and leaving the
results of an analysis at odds with the underlying assumptions. Specific
data analysis methods that can be used to check whether or not the
assumptions hold in a particular case are discussed in Section 4.4.4.

4.2. Underlying Assumptions for Process Modeling
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Contents of
Section 4.2

What are the typical underlying assumptions in process
modeling?

The process is a statistical process.1.  

The means of the random errors are zero.2.  

The random errors have a constant standard deviation.3.  

The random errors follow a normal distribution.4.  

The data are randomly sampled from the process.5.  

The explanatory variables are observed without error.6.  

1.  

4.2. Underlying Assumptions for Process Modeling
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling

4.2.1.What are the typical underlying
assumptions in process modeling?

Overview of
Section 4.2.1

This section lists the typical assumptions underlying most process
modeling methods. On each of the following pages, one of the six
major assumptions is described individually; the reasons for it's
importance are also briefly discussed; and any methods that are not
subject to that particular assumption are noted. As discussed on the
previous page, these are implicit assumptions based on properties
inherent to the process modeling methods themselves. Successful use
of these methods in any particular application hinges on the validity of
the underlying assumptions, whether their existence is acknowledged
or not. Section 4.4.4 discusses methods for checking the validity of
these assumptions.

Typical
Assumptions
for Process
Modeling

The process is a statistical process.1.  

The means of the random errors are zero.2.  

The random errors have a constant standard deviation.3.  

The random errors follow a normal distribution.4.  

The data are randomly sampled from the process.5.  

The explanatory variables are observed without error.6.  

4.2.1. What are the typical underlying assumptions in process modeling?
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling
4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.1.The process is a statistical process.

"Statistical"
Implies
Random
Variation

The most basic assumption inherent to all statistical methods for
process modeling is that the process to be described is actually a
statistical process. This assumption seems so obvious that it is
sometimes overlooked by analysts immersed in the details of a
process or in a rush to uncover information of interest from an
exciting new data set. However, in order to successfully model a
process using statistical methods, it must include random variation.
Random variation is what makes the process statistical rather than
purely deterministic.

Role of
Random
Variation

The overall goal of all statistical procedures, including those designed
for process modeling, is to enable valid conclusions to be drawn from
noisy data. As a result, statistical procedures are designed to compare
apparent effects found in a data set to the noise in the data in order to
determine whether the effects are more likely to be caused by a
repeatable underlying phenomenon of some sort or by fluctuations in
the data that happened by chance. Thus the random variation in the
process serves as a baseline for drawing conclusions about the nature
of the deterministic part of the process. If there were no random noise
in the process, then conclusions based on statistical methods would no
longer make sense or be appropriate.

4.2.1.1. The process is a statistical process.
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This
Assumption
Usually Valid

Fortunately this assumption is valid for most physical processes.
There will be random error in the measurements almost any time
things need to be measured. In fact, there are often other sources of
random error, over and above measurement error, in complex, real-life
processes. However, examples of non-statistical processes include

physical processes in which the random error is negligible
compared to the systematic errors,

1.  

processes based on deterministic computer simulations,2.  

processes based on theoretical calculations.3.  

If models of these types of processes are needed, use of mathematical
rather than statistical process modeling tools would be more
appropriate.

Distinguishing
Process Types

One sure indicator that a process is statistical is if repeated
observations of the process response under a particular fixed condition
yields different results. The converse, repeated observations of the
process response always yielding the same value, is not a sure
indication of a non-statistical process, however. For example, in some
types of computations in which complex numerical methods are used
to approximate the solutions of theoretical equations, the results of a
computation might deviate from the true solution in an essentially
random way because of the interactions of round-off errors, multiple
levels of approximation, stopping rules, and other sources of error.
Even so, the result of the computation might be the same each time it
is repeated because all of the initial conditions of the calculation are
reset to the same values each time the calculation is made. As a result,
scientific or engineering knowledge of the process must also always
be used to determine whether or not a given process is statistical.

4.2.1.1. The process is a statistical process.
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling
4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.2.The means of the random errors are
zero.

Parameter
Estimation
Requires
Known
Relationship
Between
Data and
Regression
Function

To be able to estimate the unknown parameters in the regression
function, it is necessary to know how the data at each point in the
explanatory variable space relate to the corresponding value of the
regression function. For example, if the measurement system used to
observe the values of the response variable drifts over time, then the
deterministic variation in the data would be the sum of the drift
function and the true regression function. As a result, either the data
would need to be adjusted prior to fitting the model or the fitted model
would need to be adjusted after the fact to obtain the regression
function. In either case, information about the form of the drift function
would be needed. Since it would be difficult to generalize an activity
like drift correction to a generic process, and since it would also be
unnecessary for many processes, most process modeling methods rely
on having data in which the observed responses are directly equal, on
average, to the regression function values. Another way of expressing
this idea is to say the mean of the random errors at each combination of
explanatory variable values is zero.

Validity of
Assumption
Improved by
Experimental
Design

The validity of this assumption is determined by both the nature of the
process and, to some extent, by the data collection methods used. The
process may be one in which the data are easily measured and it will be
clear that the data have a direct relationship to the regression function.
When this is the case, use of optimal methods of data collection are not
critical to the success of the modeling effort. Of course, it is rarely
known that this will be the case for sure, so it is usually worth the effort
to collect the data in the best way possible.

4.2.1.2. The means of the random errors are zero.
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Other processes may be less easily dealt with, being subject to
measurement drift or other systematic errors. For these processes it
may be possible to eliminate or at least reduce the effects of the
systematic errors by using good experimental design techniques, such
as randomization of the measurement order. Randomization can
effectively convert systematic measurement errors into additional
random process error. While adding to the random error of the process
is undesirable, this will provide the best possible information from the
data about the regression function, which is the current goal.

In the most difficult processes even good experimental design may not
be able to salvage a set of data that includes a high level of systematic
error. In these situations the best that can be hoped for is recognition of
the fact that the true regression function has not been identified by the
analysis. Then effort can be put into finding a better way to solve the
problem by correcting for the systematic error using additional
information, redesigning the measurement system to eliminate the
systematic errors, or reformulating the problem to obtain the needed
information another way.

Assumption
Violated by
Errors in
Observation
of 

Another more subtle violation of this assumption occurs when the
explanatory variables are observed with random error. Although it
intuitively seems like random errors in the explanatory variables should
cancel out on average, just as random errors in the observation of the
response variable do, that is unfortunately not the case. The direct
linkage between the unknown parameters and the explanatory variables
in the functional part of the model makes this situation much more
complicated than it is for the random errors in the response variable .
More information on why this occurs can be found in Section 4.2.1.6.

4.2.1.2. The means of the random errors are zero.
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling
4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.3.The random errors have a constant
standard deviation.

All Data
Treated
Equally by
Most
Process
Modeling
Methods

Due to the presence of random variation, it can be difficult to determine
whether or not all of the data in a data set are of equal quality. As a
result, most process modeling procedures treat all of the data equally
when using it to estimate the unknown parameters in the model. Most
methods also use a single estimate of the amount of random variability
in the data for computing prediction and calibration uncertainties.
Treating all of the data in the same way also yields simpler,
easier-to-use models. Not surprisingly, however, the decision to treat the
data like this can have a negative effect on the quality of the resulting
model too, if it turns out the data are not all of equal quality.

Data
Quality
Measured by
Standard
Deviation

Of course data quality can't be measured point-by-point since it is clear
from direct observation of the data that the amount of error in each point
varies. Instead, points that have the same underlying average squared
error, or variance, are considered to be of equal quality. Even though
the specific process response values observed at points that meet this
criterion will have different errors, the data collected at such points will
be of equal quality over repeated data collections. Since the standard
deviation of the data at each set of explanatory variable values is simply
the square root of its variance, the standard deviation of the data for
each different combination of explanatory variables can also be used to
measure data quality. The standard deviation is preferred, in fact,
because it has the advantage of being measured in the same units as the
response variable, making it easier to relate to this statistic.

4.2.1.3. The random errors have a constant standard deviation.
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Assumption
Not Needed
for Weighted
Least
Squares

The assumption that the random errors have constant standard deviation
is not implicit to weighted least squares regression. Instead, it is
assumed that the weights provided in the analysis correctly indicate the
differing levels of variability present in the response variables. The
weights are then used to adjust the amount of influence each data point
has on the estimates of the model parameters to an appropriate level.
They are also used to adjust prediction and calibration uncertainties to
the correct levels for different regions of the data set.

Assumption
Does Apply
to LOESS

Even though it uses weighted least squares to estimate the model
parameters, LOESS still relies on the assumption of a constant standard
deviation. The weights used in LOESS actually reflect the relative level
of similarity between mean response values at neighboring points in the
explanatory variable space rather than the level of response precision at
each set of explanatory variable values. Actually, because LOESS uses
separate parameter estimates in each localized subset of data, it does not
require the assumption of a constant standard deviation of the data for
parameter estimation. The subsets of data used in LOESS are usually
small enough that the precision of the data is roughly constant within
each subset. LOESS normally makes no provisions for adjusting
uncertainty computations for differing levels of precision across a data
set, however.

4.2.1.3. The random errors have a constant standard deviation.
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling
4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.4.The random errors follow a normal
distribution.

Primary Need
for
Distribution
Information is
Inference

After fitting a model to the data and validating it, scientific or
engineering questions about the process are usually answered by
computing statistical intervals for relevant process quantities using the
model. These intervals give the range of plausible values for the
process parameters based on the data and the underlying assumptions
about the process. Because of the statistical nature of the process,
however, the intervals cannot always be guaranteed to include the true
process parameters and still be narrow enough to be useful. Instead the
intervals have a probabilistic interpretation that guarantees coverage of
the true process parameters a specified proportion of the time. In order
for these intervals to truly have their specified probabilistic
interpretations, the form of the distribution of the random errors must
be known. Although the form of the probability distribution must be
known, the parameters of the distribution can be estimated from the
data.

Of course the random errors from different types of processes could be
described by any one of a wide range of different probability
distributions in general, including the uniform, triangular, double
exponential, binomial and Poisson distributions. With most process
modeling methods, however, inferences about the process are based on
the idea that the random errors are drawn from a normal distribution.
One reason this is done is because the normal distribution often
describes the actual distribution of the random errors in real-world
processes reasonably well. The normal distribution is also used
because the mathematical theory behind it is well-developed and
supports a broad array of inferences on functions of the data relevant
to different types of questions about the process.

4.2.1.4. The random errors follow a normal distribution.
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Non-Normal
Random
Errors May
Result in
Incorrect
Inferences

Of course, if it turns out that the random errors in the process are not
normally distributed, then any inferences made about the process may
be incorrect. If the true distribution of the random errors is such that
the scatter in the data is less than it would be under a normal
distribution, it is possible that the intervals used to capture the values
of the process parameters will simply be a little longer than necessary.
The intervals will then contain the true process parameters more often
than expected. It is more likely, however, that the intervals will be too
short or will be shifted away from the true mean value of the process
parameter being estimated. This will result in intervals that contain the
true process parameters less often than expected. When this is the case,
the intervals produced under the normal distribution assumption will
likely lead to incorrect conclusions being drawn about the process.

Parameter
Estimation
Methods Can
Require
Gaussian
Errors

The methods used for parameter estimation can also imply the
assumption of normally distributed random errors. Some methods, like
maximum likelihood, use the distribution of the random errors directly
to obtain parameter estimates. Even methods that do not use
distributional methods for parameter estimation directly, like least
squares, often work best for data that are free from extreme random
fluctuations. The normal distribution is one of the probability
distributions in which extreme random errors are rare. If some other
distribution actually describes the random errors better than the normal
distribution does, then different parameter estimation methods might
need to be used in order to obtain good estimates of the values of the
unknown parameters in the model.

4.2.1.4. The random errors follow a normal distribution.
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling
4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.5.The data are randomly sampled
from the process.

Data Must
Reflect the
Process

Since the random variation inherent in the process is critical to
obtaining satisfactory results from most modeling methods, it is
important that the data reflect that random variation in a representative
way. Because of the nearly infinite number of ways non-representative
sampling might be done, however, few, if any, statistical methods
would ever be able to correct for the effects that would have on the data.
Instead, these methods rely on the assumption that the data will be
representative of the process. This means that if the variation in the data
is not representative of the process, the nature of the deterministic part

of the model, described by the function, , will be incorrect.
This, in turn, is likely to lead to incorrect conclusions being drawn
when the model is used to answer scientific or engineering questions
about the process.

Data Best
Reflects the
Process Via
Unbiased
Sampling

Given that we can never determine what the actual random errors in a
particular data set are, representative samples of data are best obtained
by randomly sampling data from the process. In a simple random
sample, every response from the population(s) being sampled has an
equal chance of being observed. As a result, while it cannot guarantee
that each sample will be representative of the process, random sampling
does ensure that the act of data collection does not leave behind any
biases in the data, on average. This means that most of the time, over
repeated samples, the data will be representative of the process. In
addition, under random sampling, probability theory can be used to
quantify how often particular modeling procedures will be affected by
relatively extreme variations in the data, allowing us to control the error
rates experienced when answering questions about the process.

4.2.1.5. The data are randomly sampled from the process.
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This
Assumption
Relatively
Controllable

Obtaining data is of course something that is actually done by the
analyst rather than being a feature of the process itself. This gives the
analyst some ability to ensure that this assumption will be valid. Paying
careful attention to data collection procedures and employing
experimental design principles like randomization of the run order will
yield a sample of data that is as close as possible to being perfectly
randomly sampled from the process. Section 4.3.3 has additional
discussion of some of the principles of good experimental design.

4.2.1.5. The data are randomly sampled from the process.
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling
4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.6.The explanatory variables are
observed without error.

Assumption
Needed for
Parameter
Estimation

As discussed earlier in this section, the random errors (the 's) in the
basic model,

,

must have a mean of zero at each combination of explanatory variable
values to obtain valid estimates of the parameters in the functional part
of the process model (the 's). Some of the more obvious sources of
random errors with non-zero means include

drift in the process,1.  

drift in the measurement system used to obtain the process data,
and

2.  

use of a miscalibrated measurement system.3.  

However, the presence of random errors in the measured values of the
explanatory variables is another, more subtle, source of 's with
non-zero means.

Explanatory
Variables
Observed
with Random
Error Add
Terms to 

The values of explanatory variables observed with independent,

normally distributed random errors, , can be differentiated from their
true values using the definition

.

Then applying the mean value theorem from multivariable calculus

shows that the random errors in a model based on ,

,

4.2.1.6. The explanatory variables are observed without error.
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are [Seber (1989)]

with  denoting the random error associated with the basic form of
the model,

,

under all of the usual assumptions (denoted here more carefully than is

usually necessary), and  is a value between  and . This

extra term in the expression of the random error, ,

complicates matters because  is typically not a constant.

For most functions,  will depend on the explanatory

variable values and, more importantly, on . This is the source of the
problem with observing the explanatory variable values with random
error.

 Correlated
with

Because each of the components of , denoted by , are functions

of the components of , similarly denoted by , whenever any of the

components of  simplify to expressions that are not

constant, the random variables  and  will be correlated.

This correlation will then usually induce a non-zero mean in the

product .

4.2.1.6. The explanatory variables are observed without error.
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For example, a positive correlation between  and  means

that when  is large,  will also tend to be large. Similarly,

when  is small,  will also tend to be small. This could

cause  and  to always have the same sign, which would

preclude their product having a mean of zero since all of the values of
 would be greater than or equal to zero. A negative

correlation, on the other hand, could mean that these two random
variables would always have opposite signs, resulting in a negative

mean for . These examples are extreme, but illustrate

how correlation can cause trouble even if both  and  have
zero means individually. What will happen in any particular modeling

situation will depend on the variability of the 's, the form of the
function, the true values of the 's, and the values of the explanatory
variables.

Biases Can
Affect
Parameter
Estimates
When Means
of 's are 0

Even if the 's have zero means, observation of the explanatory
variables with random error can still bias the parameter estimates.
Depending on the method used to estimate the parameters, the
explanatory variables can be used in the computation of the parameter

estimates in ways that keep the 's from canceling out. One
unfortunate example of this phenomenon is the use of least squares to
estimate the parameters of a straight line. In this case, because of the
simplicity of the model,

,

the term  simplifies to . Because this term does not

involve , it does not induce non-zero means in the 's. With the way
the explanatory variables enter into the formulas for the estimates of
the 's, the random errors in the explanatory variables do not cancel
out on average. This results in parameter estimators that are biased and
will not approach the true parameter values no matter how much data
are collected.

4.2.1.6. The explanatory variables are observed without error.
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Berkson
Model Does
Not Depend
on this
Assumption

There is one type of model in which errors in the measurement of the
explanatory variables do not bias the parameter estimates. The Berkson
model [Berkson (1950)] is a model in which the observed values of the
explanatory variables are directly controlled by the experimenter while
their true values vary for each observation. The differences between
the observed and true values for each explanatory variable are assumed
to be independent random variables from a normal distribution with a
mean of zero. In addition, the errors associated with each explanatory
variable must be independent of the errors associated with all of the
other explanatory variables, and also independent of the observed
values of each explanatory variable. Finally, the Berkson model
requires the functional part of the model to be a straight line, a plane,
or a higher-dimension first-order model in the explanatory variables.
When these conditions are all met, the errors in the explanatory
variables can be ignored.

Applications for which the Berkson model correctly describes the data
are most often situations in which the experimenter can adjust
equipment settings so that the observed values of the explanatory
variables will be known ahead of time. For example, in a study of the
relationship between the temperature used to dry a sample for chemical
analysis and the resulting concentration of a volatile consituent, an
oven might be used to prepare samples at temperatures of 300 to 500
degrees in 50 degree increments. In reality, however, the true
temperature inside the oven will probably not exactly equal 450
degrees each time that setting is used (or 300 when that setting is used,
etc). The Berkson model would apply, though, as long as the errors in
measuring the temperature randomly differed from one another each
time an observed value of 450 degrees was used and the mean of the
true temperatures over many repeated runs at an oven setting of 450
degrees really was 450 degrees. Then, as long as the model was also a
straight line relating the concentration to the observed values of
temperature, the errors in the measurement of temperature would not
bias the estimates of the parameters.

4.2.1.6. The explanatory variables are observed without error.
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Assumption
Validity
Requires
Careful
Consideration

The validity of this assumption requires careful consideration in
scientific and engineering applications. In these types of applications it
is most often the case that the response variable and the explanatory
variables will all be measured with some random error. Fortunately,
however, there is also usually some knowledge of the relative amount
of information in the observed values of each variable. This allows a
rough assessment of how much bias there will be in the estimated
values of the parameters. As long as the biases in the parameter
estimators have a negligible effect on the intended use of the model,
then this assumption can be considered valid from a practical
viewpoint. Section 4.4.4, which covers model validation, points to a
discussion of a practical method for checking the validity of this
assumption.

4.2.1.6. The explanatory variables are observed without error.
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4. Process Modeling

4.3.Data Collection for Process Modeling

Collecting
Good Data

This section lays out some general principles for collecting data for
construction of process models. Using well-planned data collection
procedures is often the difference between successful and unsuccessful
experiments. In addition, well-designed experiments are often less
expensive than those that are less well thought-out, regardless of overall
success or failure.

Specifically, this section will answer the question:

What can the analyst do even prior to collecting the data (that is,
at the experimental design stage) that would allow the analyst to
do an optimal job of modeling the process?

Contents:
Section 3

This section deals with the following five questions:

What is design of experiments (aka DEX or DOE)?1.  

Why is experimental design important for process modeling?2.  

What are some general design principles for process modeling?3.  

I've heard some people refer to "optimal" designs, shouldn't I use
those?

4.  

How can I tell if a particular experimental design is good for my
application?

5.  

4.3. Data Collection for Process Modeling
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4. Process Modeling
4.3. Data Collection for Process Modeling

4.3.1.What is design of experiments (aka
DEX or DOE)?

Systematic
Approach to
Data Collection

Design of experiments (DEX or DOE) is a systematic, rigorous
approach to engineering problem-solving that applies principles and
techniques at the data collection stage so as to ensure the generation
of valid, defensible, and supportable engineering conclusions. In
addition, all of this is carried out under the constraint of a minimal
expenditure of engineering runs, time, and money.

DEX Problem
Areas

There are 4 general engineering problem areas in which DEX may
be applied:

Comparative1.  

Screening/Characterizing2.  

Modeling3.  

Optimizing4.  

Comparative In the first case, the engineer is interested in assessing whether a
change in a single factor has in fact resulted in a
change/improvement to the process as a whole.

Screening
Characterization

In the second case, the engineer is interested in "understanding" the
process as a whole in the sense that he/she wishes (after design and
analysis) to have in hand a ranked list of important through
unimportant factors (most important to least important) that affect
the process.

Modeling In the third case, the engineer is interested in functionally modeling
the process with the output being a good-fitting (= high predictive
power) mathematical function, and to have good (= maximal
accuracy) estimates of the coefficients in that function.

4.3.1. What is design of experiments (aka DEX or DOE)?
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Optimizing In the fourth case, the engineer is interested in determining optimal
settings of the process factors; that is, to determine for each factor
the level of the factor that optimizes the process response.

In this section, we focus on case 3: modeling.

4.3.1. What is design of experiments (aka DEX or DOE)?
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4. Process Modeling
4.3. Data Collection for Process Modeling

4.3.2.Why is experimental design
important for process modeling?

Output from
Process
Model is
Fitted
Mathematical
Function

The output from process modeling is a fitted mathematical function
with estimated coefficients. For example, in modeling resistivity, , as
a function of dopant density, , an analyst may suggest the function

in which the coefficients to be estimated are , , and . Even for

a given functional form, there is an infinite number of potential
coefficient values that potentially may be used. Each of these
coefficient values will in turn yield predicted values.

What are
Good
Coefficient
Values?

Poor values of the coefficients are those for which the resulting
predicted values are considerably different from the observed raw data

. Good values of the coefficients are those for which the resulting
predicted values are close to the observed raw data . The best values
of the coefficients are those for which the resulting predicted values are
close to the observed raw data , and the statistical uncertainty
connected with each coefficient is small.

There are two considerations that are useful for the generation of "best"
coefficients:

Least squares criterion1.  

Design of experiment principles2.  

4.3.2. Why is experimental design important for process modeling?
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Least
Squares
Criterion

For a given data set (e.g., 10 ( , ) pairs), the most common procedure

for obtaining the coefficients for  is the least squares

estimation criterion. This criterion yields coefficients with predicted
values that are closest to the raw data  in the sense that the sum of the
squared differences between the raw data and the predicted values is as
small as possible.

The overwhelming majority of regression programs today use the least
squares criterion for estimating the model coefficients. Least squares
estimates are popular because

the estimators are statistically optimal (BLUEs: Best Linear
Unbiased Estimators);

1.  

the estimation algorithm is mathematically tractable, in closed
form, and therefore easily programmable.

2.  

How then can this be improved? For a given set of  values it cannot
be; but frequently the choice of the  values is under our control. If we
can select the  values, the coefficients will have less variability than if
the  are not controlled.

Design of
Experiment
Principles

As to what values should be used for the 's, we look to established
experimental design principles for guidance.

Principle 1:
Minimize
Coefficient
Estimation
Variation

The first principle of experimental design is to control the values
within the  vector such that after the  data are collected, the
subsequent model coefficients are as good, in the sense of having the
smallest variation, as possible.

The key underlying point with respect to design of experiments and
process modeling is that even though (for simple ( , ) fitting, for
example) the least squares criterion may yield optimal (minimal
variation) estimators for a given distribution of  values, some
distributions of data in the  vector may yield better (smaller variation)
coefficient estimates than other  vectors. If the analyst can specify the
values in the  vector, then he or she may be able to drastically change
and reduce the noisiness of the subsequent least squares coefficient
estimates.

4.3.2. Why is experimental design important for process modeling?
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Five Designs To see the effect of experimental design on process modeling, consider
the following simplest case of fitting a line:

Suppose the analyst can afford 10 observations (that is, 10 ( , ) pairs)
for the purpose of determining optimal (that is, minimal variation)
estimators of  and . What 10  values should be used for the

purpose of collecting the corresponding 10  values? Colloquially,
where should the 10  values be sprinkled along the horizontal axis so
as to minimize the variation of the least squares estimated coefficients
for  and ? Should the 10  values be:

ten equi-spaced values across the range of interest?1.  

five replicated equi-spaced values across the range of interest?2.  

five values at the minimum of the  range and five values at the
maximum of the  range?

3.  

one value at the minimum, eight values at the mid-range, and
one value at the maximum?

4.  

four values at the minimum, two values at mid-range, and four
values at the maximum?

5.  

or (in terms of "quality" of the resulting estimates for  and )

perhaps it doesn't make any difference?

For each of the above five experimental designs, there will of course be
 data collected, followed by the generation of least squares estimates

for  and , and so each design will in turn yield a fitted line.

Are the Fitted
Lines Better
for Some
Designs?

But are the fitted lines, i.e., the fitted process models, better for some
designs than for others? Are the coefficient estimator variances smaller
for some designs than for others? For given estimates, are the resulting
predicted values better (that is, closer to the observed  values) than for
other designs? The answer to all of the above is YES. It DOES make a
difference.

The most popular answer to the above question about which design to
use for linear modeling is design #1 with ten equi-spaced points. It can
be shown, however, that the variance of the estimated slope parameter
depends on the design according to the relationship

.

4.3.2. Why is experimental design important for process modeling?
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Therefore to obtain minimum variance estimators, one maximizes the
denominator on the right. To maximize the denominator, it is (for an
arbitrarily fixed ), best to position the 's as far away from  as
possible. This is done by positioning half of the 's at the lower
extreme and the other half at the upper extreme. This is design #3
above, and this "dumbbell" design (half low and half high) is in fact the
best possible design for fitting a line. Upon reflection, this is intuitively
arrived at by the adage that "2 points define a line", and so it makes the
most sense to determine those 2 points as far apart as possible (at the
extremes) and as well as possible (having half the data at each
extreme). Hence the design of experiment solution to model processing
when the model is a line is the "dumbbell" design--half the X's at each
extreme.

What is the
Worst
Design?

What is the worst design in the above case? Of the five designs, the
worst design is the one that has maximum variation. In the
mathematical expression above, it is the one that minimizes the
denominator, and so this is design #4 above, for which almost all of the
data are located at the mid-range. Clearly the estimated line in this case
is going to chase the solitary point at each end and so the resulting
linear fit is intuitively inferior.

Designs 1, 2,
and 5

What about the other 3 designs? Designs 1, 2, and 5 are useful only for
the case when we think the model may be linear, but we are not sure,
and so we allow additional points that permit fitting a line if
appropriate, but build into the design the "capacity" to fit beyond a line
(e.g., quadratic, cubic, etc.) if necessary. In this regard, the ordering of
the designs would be

design 5 (if our worst-case model is quadratic),●   

design 2 (if our worst-case model is quartic)●   

design 1 (if our worst-case model is quintic and beyond)●   

4.3.2. Why is experimental design important for process modeling?
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4. Process Modeling
4.3. Data Collection for Process Modeling

4.3.3.What are some general design
principles for process modeling?

Experimental
Design
Principles
Applied to
Process
Modeling

There are six principles of experimental design as applied to process
modeling:

Capacity for Primary Model1.  

Capacity for Alternative Model2.  

Minimum Variance of Coefficient Estimators3.  

Sample where the Variation Is4.  

Replication5.  

Randomization6.  

We discuss each in detail below.

Capacity for
Primary
Model

For your best-guess model, make sure that the design has the capacity
for estimating the coefficients of that model. For a simple example of
this, if you are fitting a quadratic model, then make sure you have at
least three distinct horixontal axis points.

Capacity for
Alternative
Model

If your best-guess model happens to be inadequate, make sure that the
design has the capacity to estimate the coefficients of your best-guess
back-up alternative model (which means implicitly that you should
have already identified such a model). For a simple example, if you
suspect (but are not positive) that a linear model is appropriate, then it
is best to employ a globally robust design (say, four points at each
extreme and three points in the middle, for a ten-point design) as
opposed to the locally optimal design (such as five points at each
extreme). The locally optimal design will provide a best fit to the line,
but have no capacity to fit a quadratic. The globally robust design will
provide a good (though not optimal) fit to the line and additionally
provide a good (though not optimal) fit to the quadratic.

4.3.3. What are some general design principles for process modeling?
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Minimum
Variance of
Coefficient
Estimators

For a given model, make sure the design has the property of
minimizing the variation of the least squares estimated coefficients.
This is a general principle that is always in effect but which in
practice is hard to implement for many models beyond the simpler

1-factor  models. For more complicated 1-factor

models, and for most multi-factor  models, the

expressions for the variance of the least squares estimators, although
available, are complicated and assume more than the analyst typically
knows. The net result is that this principle, though important, is harder
to apply beyond the simple cases.

Sample Where
the Variation
Is (Non
Constant
Variance
Case)

Regardless of the simplicity or complexity of the model, there are
situations in which certain regions of the curve are noisier than others.
A simple case is when there is a linear relationship between  and 
but the recording device is proportional rather than absolute and so
larger values of  are intrinsically noisier than smaller values of . In
such cases, sampling where the variation is means to have more
replicated points in those regions that are noisier. The practical
answer to how many such replicated points there should be is

with  denoting the theoretical standard deviation for that given
region of the curve. Usually  is estimated by a-priori guesses for
what the local standard deviations are.

Sample Where
the Variation
Is (Steep
Curve Case)

A common occurence for non-linear models is for some regions of the
curve to be steeper than others. For example, in fitting an exponential
model (small  corresponding to large , and large  corresponding
to small ) it is often the case that the  data in the steep region are
intrinsically noisier than the  data in the relatively flat regions. The
reason for this is that commonly the  values themselves have a bit of
noise and this -noise gets translated into larger -noise in the steep
sections than in the shallow sections. In such cases, when we know
the shape of the response curve well enough to identify
steep-versus-shallow regions, it is often a good idea to sample more
heavily in the steep regions than in the shallow regions. A practical
rule-of-thumb for where to position the  values in such situations is
to

sketch out your best guess for what the resulting curve will be;1.  

4.3.3. What are some general design principles for process modeling?
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partition the vertical (that is the ) axis into  equi-spaced
points (with  denoting the total number of data points that you
can afford);

2.  

draw horizontal lines from each vertical axis point to where it
hits the sketched-in curve.

3.  

drop a vertical projection line from the curve intersection point
to the horizontal axis.

4.  

These will be the recommended  values to use in the design.

The above rough procedure for an exponentially decreasing curve
would thus yield a logarithmic preponderance of points in the steep
region of the curve and relatively few points in the flatter part of the
curve.

Replication If affordable, replication should be part of every design. Replication
allows us to compute a model-independent estimate of the process
standard deviation. Such an estimate may then be used as a criterion
in an objective lack-of-fit test to assess whether a given model is
adequate. Such an objective lack-of-fit F-test can be employed only if
the design has built-in replication. Some replication is essential;
replication at every point is ideal.

Randomization Just because the 's have some natural ordering does not mean that
the data should be collected in the same order as the 's. Some aspect
of randomization should enter into every experiment, and experiments
for process modeling are no exception. Thus if your are sampling ten
points on a curve, the ten  values should not be collected by
sequentially stepping through the  values from the smallest to the
largest. If you do so, and if some extraneous drifting or wear occurs in
the machine, the operator, the environment, the measuring device,
etc., then that drift will unwittingly contaminate the  values and in
turn contaminate the final fit. To minimize the effect of such potential
drift, it is best to randomize (use random number tables) the sequence
of the  values. This will not make the drift go away, but it will
spread the drift effect evenly over the entire curve, realistically
inflating the variation of the fitted values, and providing some
mechanism after the fact (at the residual analysis model validation
stage) for uncovering or discovering such a drift. If you do not
randomize the run sequence, you give up your ability to detect such a
drift if it occurs.

4.3.3. What are some general design principles for process modeling?
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4. Process Modeling
4.3. Data Collection for Process Modeling

4.3.4. I've heard some people refer to
"optimal" designs, shouldn't I use
those?

Classical
Designs Heavily
Used in Industry

The most heavily used designs in industry are the "classical designs"
(full factorial designs, fractional factorial designs, Latin square
designs, Box-Behnken designs, etc.). They are so heavily used
because they are optimal in their own right and have served superbly
well in providing efficient insight into the underlying structure of
industrial processes.

Reasons
Classical
Designs May
Not Work

Cases do arise, however, for which the tabulated classical designs do
not cover a particular practical situation. That is, user constraints
preclude the use of tabulated classical designs because such classical
designs do not accommodate user constraints. Such constraints
include:

Limited maximum number of runs:

User constraints in budget and time may dictate a maximum
allowable number of runs that is too small or too "irregular"
(e.g., "13") to be accommodated by classical designs--even
fractional factorial designs.

1.  

Impossible factor combinations:

The user may have some factor combinations that are
impossible to run. Such combinations may at times be
specified (to maintain balance and orthogonality) as part of a
recommeded classical design. If the user simply omits this
impossible run from the design, the net effect may be a
reduction in the quality and optimaltiy of the classical design.

2.  

Too many levels:

The number of factors and/or the number of levels of some
factors intended for use may not be included in tabulations of
classical designs.

3.  

4.3.4. I've heard some people refer to "optimal" designs, shouldn't I use those?
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4. Complicated underlying model:

The user may be assuming an underlying model that is too
complicated (or too non-linear), so that classical designs
would be inappropriate.

What to Do If
Classical
Designs Do Not
Exist?

If user constraints are such that classical designs do not exist to
accommodate such constraints, then what is the user to do?

The previous section's list of design criteria (capability for the
primary model, capability for the alternate model, minimum
variation of estimated coefficients, etc.) is a good passive target to
aim for in terms of desirable design properties, but provides little
help in terms of an active formal construction methodology for
generating a design.

Common
Optimality
Criteria

To satisfy this need, an "optimal design" methodology has been
developed to generate a design when user constraints preclude the
use of tabulated classical designs. Optimal designs may be optimal
in many different ways, and what may be an optimal design
according to one criterion may be suboptimal for other criteria.
Competing criteria have led to a literal alphabet-soup collection of
optimal design methodologies. The four most popular ingredients in
that "soup" are:

D-optimal designs: minimize the generalized variance of the
parameter estimators.

A-optimal designs: minimize the average variance of the parameter
estimators.

G-optimal designs: minimize the maximum variance of the
predicted values.

V-optimal designs: minimize the average variance of the predicted
values.

Need 1: a Model The motivation for optimal designs is the practical constraints that
the user has. The advantage of optimal designs is that they do
provide a reasonable design-generating methodology when no other
mechanism exists. The disadvantage of optimal designs is that they
require a model from the user. The user may not have this model.

All optimal designs are model-dependent, and so the quality of the
final engineering conclusions that result from the ensuing design,
data, and analysis is dependent on the correctness of the analyst's
assumed model. For example, if the responses from a particular
process are actually being drawn from a cubic model and the analyst
assumes a linear model and uses the corresponding optimal design
to generate data and perform the data analysis, then the final

4.3.4. I've heard some people refer to "optimal" designs, shouldn't I use those?
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engineering conclusions will be flawed and invalid. Hence one price
for obtaining an in-hand generated design is the designation of a
model. All optimal designs need a model; without a model, the
optimal design-generation methodology cannot be used, and general
design principles must be reverted to.

Need 2: a
Candidate Set of
Points

The other price for using optimal design methodology is a
user-specified set of candidate points. Optimal designs will not
generate the best design points from some continuous region--that is
too much to ask of the mathematics. Optimal designs will generate
the best subset of  points from a larger superset of candidate
points. The user must specify this candidate set of points. Most
commonly, the superset of candidate points is the full factorial
design over a fine-enough grid of the factor space with which the
analyst is comfortable. If the grid is too fine, and the resulting
superset overly large, then the optimal design methodology may
prove computationally challenging.

Optimal
Designs are
Computationally
Intensive

The optimal design-generation methodology is computationally
intensive. Some of the designs (e.g., D-optimal) are better than other
designs (such as A-optimal and G-optimal) in regard to efficiency of
the underlying search algorithm. Like most mathematical
optimization techniques, there is no iron-clad guarantee that the
result from the optimal design methodology is in fact the true
optimum. However, the results are usually satisfactory from a
practical point of view, and are far superior than any ad hoc designs.

For further details about optimal designs, the analyst is referred to
Montgomery (2001).
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4. Process Modeling
4.3. Data Collection for Process Modeling

4.3.5.How can I tell if a particular
experimental design is good for my
application?

Assess
Relative to
the Six
Design
Principles

If you have a design, generated by whatever method, in hand, how can
you assess its after-the-fact goodness? Such checks can potentially
parallel the list of the six general design principles. The design can be
assessed relative to each of these six principles. For example, does it
have capacity for the primary model, does it have capacity for an
alternative model, etc.

Some of these checks are quantitative and complicated; other checks
are simpler and graphical. The graphical checks are the most easily
done and yet are among the most informative. We include two such
graphical checks and one quantitative check.

Graphically
Check for
Univariate
Balance

If you have a design that claims to be globally good in k factors, then
generally that design should be locally good in each of the individual k
factors. Checking high-dimensional global goodness is difficult, but
checking low-dimensional local goodness is easy. Generate k counts
plots, with the levels of factors  plotted on the horizontal axis of each
plot and the number of design points for each level in factor  on the
vertical axis. For most good designs, these counts should be about the
same (= balance) for all levels of a factor. Exceptions exist, but such
balance is a low-level characteristic of most good designs.

4.3.5. How can I tell if a particular experimental design is good for my application?
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Graphically
Check for
Bivariate
Balance

If you have a design that is purported to be globally good in k factors,
then generally that design should be locally good in all pairs of the
individual k factors. Graphically check for such 2-way balance by
generating plots for all pairs of factors, where the horizontal axis of a
given plot is  and the vertical axis is . The response variable  does
NOT come into play in these plots. We are only interested in
characteristics of the design, and so only the  variables are involved.
The 2-way plots of most good designs have a certain symmetric and
balanced look about them--all combination points should be covered
and each combination point should have about the same number of
points.

Check for
Minimal
Variation

For optimal designs, metrics exist (D-efficiency, A-efficiency, etc.) that
can be computed and that reflect the quality of the design. Further,
relative ratios of standard deviations of the coefficient estimators and
relative ratios of predicted values can be computed and compared for
such designs. Such calculations are commonly performed in computer
packages which specialize in the generation of optimal designs.

4.3.5. How can I tell if a particular experimental design is good for my application?
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4. Process Modeling

4.4.Data Analysis for Process Modeling

Building a
Good Model

This section contains detailed discussions of the necessary steps for
developing a good process model after data have been collected. A
general model-building framework, applicable to multiple statistical
methods, is described with method-specific points included when
necessary.

Contents:
Section 4

What are the basic steps for developing an effective process
model?

1.  

How do I select a function to describe my process?

Incorporating Scientific Knowledge into Function Selection1.  

Using the Data to Select an Appropriate Function2.  

Using Methods that Do Not Require Function Specification3.  

2.  

How are estimates of the unknown parameters obtained?

Least Squares1.  

Weighted Least Squares2.  

3.  

How can I tell if a model fits my data?

How can I assess the sufficiency of the functional part of
the model?

1.  

How can I detect non-constant variation across the data?2.  

How can I tell if there was drift in the measurement
process?

3.  

How can I assess whether the random errors are
independent from one to the next?

4.  

How can I test whether or not the random errors are
normally distributed?

5.  

How can I test whether any significant terms are missing or
misspecified in the functional part of the model?

6.  

How can I test whether all of the terms in the functional
part of the model are necessary?

7.  

4.  

4.4. Data Analysis for Process Modeling
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If my current model does not fit the data well, how can I improve
it?

Updating the Function Based on Residual Plots1.  

Accounting for Non-Constant Variation Across the Data2.  

Accounting for Errors with a Non-Normal Distribution3.  

5.  

4.4. Data Analysis for Process Modeling
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4. Process Modeling
4.4. Data Analysis for Process Modeling

4.4.1.What are the basic steps for developing an
effective process model?

Basic Steps
Provide
Universal
Framework

The basic steps used for model-building are the same across all modeling methods. The
details vary somewhat from method to method, but an understanding of the common steps,
combined with the typical underlying assumptions needed for the analysis, provides a
framework in which the results from almost any method can be interpreted and understood.

Basic Steps
of Model
Building

The basic steps of the model-building process are:

model selection1.  

model fitting, and2.  

model validation.3.  

These three basic steps are used iteratively until an appropriate model for the data has been
developed. In the model selection step, plots of the data, process knowledge and
assumptions about the process are used to determine the form of the model to be fit to the
data. Then, using the selected model and possibly information about the data, an
appropriate model-fitting method is used to estimate the unknown parameters in the model.
When the parameter estimates have been made, the model is then carefully assessed to see
if the underlying assumptions of the analysis appear plausible. If the assumptions seem
valid, the model can be used to answer the scientific or engineering questions that prompted
the modeling effort. If the model validation identifies problems with the current model,
however, then the modeling process is repeated using information from the model
validation step to select and/or fit an improved model.

A
Variation
on the
Basic Steps

The three basic steps of process modeling described in the paragraph above assume that the
data have already been collected and that the same data set can be used to fit all of the
candidate models. Although this is often the case in model-building situations, one variation
on the basic model-building sequence comes up when additional data are needed to fit a
newly hypothesized model based on a model fit to the initial data. In this case two
additional steps, experimental design and data collection, can be added to the basic
sequence between model selection and model-fitting. The flow chart below shows the basic
model-fitting sequence with the integration of the related data collection steps into the
model-building process.

4.4.1. What are the basic steps for developing an effective process model?
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Model
Building
Sequence

4.4.1. What are the basic steps for developing an effective process model?
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Examples illustrating the model-building sequence in real applications can be found in the
case studies in Section 4.6. The specific tools and techniques used in the basic
model-building steps are described in the remainder of this section.

Design of
Initial
Experiment

Of course, considering the model selection and fitting before collecting the initial data is
also a good idea. Without data in hand, a hypothesis about what the data will look like is
needed in order to guess what the initial model should be. Hypothesizing the outcome of an
experiment is not always possible, of course, but efforts made in the earliest stages of a
project often maximize the efficiency of the whole model-building process and result in the
best possible models for the process. More details about experimental design can be found
in Section 4.3 and in Chapter 5: Process Improvement.

4.4.1. What are the basic steps for developing an effective process model?
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4. Process Modeling
4.4. Data Analysis for Process Modeling

4.4.2.How do I select a function to describe
my process?

Synthesis of
Process
Information
Necessary

Selecting a model of the right form to fit a set of data usually requires
the use of empirical evidence in the data, knowledge of the process and
some trial-and-error experimentation. As mentioned on the previous
page, model building is always an iterative process. Much of the need to
iterate stems from the difficulty in initially selecting a function that
describes the data well. Details about the data are often not easily visible
in the data as originally observed. The fine structure in the data can
usually only be elicited by use of model-building tools such as residual
plots and repeated refinement of the model form. As a result, it is
important not to overlook any of the sources of information that indicate
what the form of the model should be.

Answer Not
Provided by
Statistics
Alone

Sometimes the different sources of information that need to be
integrated to find an effective model will be contradictory. An open
mind and a willingness to think about what the data are saying is
important. Maintaining balance and looking for alternate sources for
unusual effects found in the data are also important. For example, in the
load cell calibration case study the statistical analysis pointed out that
the model initially thought to be appropriate did not account for all of
the structure in the data. A refined model was developed, but the
appearance of an unexpected result brings up the question of whether
the original understanding of the problem was inaccurate, or whether the
need for an alternate model was due to experimental artifacts. In the
load cell problem it was easy to accept that the refined model was closer
to the truth, but in a more complicated case additional experiments
might have been needed to resolve the issue.

4.4.2. How do I select a function to describe my process?
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Knowing
Function
Types Helps

Another helpful ingredient in model selection is a wide knowledge of
the shapes that different mathematical functions can assume. Knowing
something about the models that have been found to work well in the
past for different application types also helps. A menu of different
functions on the next page, Section 4.4.2.1. (links provided below),
provides one way to learn about the function shapes and flexibility.
Section 4.4.2.2. discusses how general function features and qualitative
scientific information can be combined to help with model selection.
Finally, Section 4.4.2.3. points to methods that don't require
specification of a particular function to be fit to the data, and how
models of those types can be refined.

Incorporating Scientific Knowledge into Function Selection1.  

Using the Data to Select an Appropriate Function2.  

Using Methods that Do Not Require Function Specification3.  

4.4.2. How do I select a function to describe my process?
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.2. How do I select a function to describe my process?

4.4.2.1. Incorporating Scientific Knowledge
into Function Selection

Choose
Functions
Whose
Properties
Match the
Process

Incorporating scientific knowledge into selection of the function
used in a process model is clearly critical to the success of the
model. When a scientific theory describing the mechanics of a
physical system can provide a complete functional form for the
process, then that type of function makes an ideal starting point for
model development. There are many cases, however, for which there
is incomplete scientific information available. In these cases it is
considerably less clear how to specify a functional form to initiate
the modeling process. A practical approach is to choose the simplest
possible functions that have properties ascribed to the process.

Example:
Concrete
Strength Versus
Curing Time

For example, if you are modeling concrete strength as a function of
curing time, scientific knowledge of the process indicates that the
strength will increase rapidly at first, but then level off as the
hydration reaction progresses and the reactants are converted to their
new physical form. The leveling off of the strength occurs because
the speed of the reaction slows down as the reactants are converted
and unreacted materials are less likely to be in proximity all of the
time. In theory, the reaction will actually stop altogether when the
reactants are fully hydrated and are completely consumed. However,
a full stop of the reaction is unlikely in reality because there is
always some unreacted material remaining that reacts increasingly
slowly. As a result, the process will approach an asymptote at its
final strength.

4.4.2.1. Incorporating Scientific Knowledge into Function Selection
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Polynomial
Models for
Concrete
Strength
Deficient

Considering this general scientific information, modeling this
process using a straight line would not reflect the physical aspects of
this process very well. For example, using the straight-line model,
the concrete strength would be predicted to continue increasing at
the same rate over its entire lifetime, though we know that is not
how it behaves. The fact that the response variable in a straight-line
model is unbounded as the predictor variable becomes extreme is
another indication that the straight-line model is not realistic for
concrete strength. In fact, this relationship between the response and
predictor as the predictor becomes extreme is common to all
polynomial models, so even a higher-degree polynomial would
probably not make a good model for describing concrete strength. A
higher-degree polynomial might be able to curve toward the data as
the strength leveled off, but it would eventually have to diverge from
the data because of its mathematical properties.

Rational
Function
Accommodates
Scientific
Knowledge
about Concrete
Strength

A more reasonable function for modeling this process might be a
rational function. A rational function, which is a ratio of two
polynomials of the same predictor variable, approaches an
asymptote if the degrees of the polynomials in the numerator and
denominator are the same. It is still a very simple model, although it
is nonlinear in the unknown parameters. Even if a rational function
does not ultimately prove to fit the data well, it makes a good
starting point for the modeling process because it incorporates the
general scientific knowledge we have of the process, without being
overly complicated. Within the family of rational functions, the
simplest model is the "linear over linear" rational function

so this would probably be the best model with which to start. If the
linear-over-linear model is not adequate, then the initial fit can be
followed up using a higher-degree rational function, or some other
type of model that also has a horizontal asymptote.

4.4.2.1. Incorporating Scientific Knowledge into Function Selection
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Focus on the
Region of
Interest

Although the concrete strength example makes a good case for
incorporating scientific knowledge into the model, it is not
necessarily a good idea to force a process model to follow all of the
physical properties that the process must follow. At first glance it
seems like incorporating physical properties into a process model
could only improve it; however, incorporating properties that occur
outside the region of interest for a particular application can actually
sacrifice the accuracy of the model "where it counts" for increased
accuracy where it isn't important. As a result, physical properties
should only be incorporated into process models when they directly
affect the process in the range of the data used to fit the model or in
the region in which the model will be used.

Information on
Function
Shapes

In order to translate general process properties into mathematical
functions whose forms may be useful for model development, it is
necessary to know the different shapes that various mathematical
functions can assume. Unfortunately there is no easy, systematic
way to obtain this information. Families of mathematical functions,
like polynomials or rational functions, can assume quite different
shapes that depend on the parameter values that distinguish one
member of the family from another. Because of the wide range of
potential shapes these functions may have, even determining and
listing the general properties of relatively simple families of
functions can be complicated. Section 8 of this chapter gives some
of the properties of a short list of simple functions that are often
useful for process modeling. Another reference that may be useful is
the Handbook of Mathematical Functions by Abramowitz and
Stegun [1964]. The Digital Library of Mathematical Functions, an
electronic successor to the Handbook of Mathematical Functions
that is under development at NIST, may also be helpful.

4.4.2.1. Incorporating Scientific Knowledge into Function Selection
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.2. How do I select a function to describe my process?

4.4.2.2.Using the Data to Select an Appropriate Function

Plot the Data The best way to select an initial model is to plot the data. Even if you have a good idea of what
the form of the regression function will be, plotting allows a preliminary check of the underlying
assumptions required for the model fitting to succeed. Looking at the data also often provides
other insights about the process or the methods of data collection that cannot easily be obtained
from numerical summaries of the data alone.

Example The data from the Pressure/Temperature example is plotted below. From the plot it looks like a
straight-line model will fit the data well. This is as expected based on Charles' Law. In this case
there are no signs of any problems with the process or data collection.

Straight-Line
Model Looks
Appropriate

4.4.2.2. Using the Data to Select an Appropriate Function
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Start with Least
Complex
Functions First

A key point when selecting a model is to start with the simplest function that looks as though it
will describe the structure in the data. Complex models are fine if required, but they should not be
used unnecessarily. Fitting models that are more complex than necessary means that random
noise in the data will be modeled as deterministic structure. This will unnecessarily reduce the
amount of data available for estimation of the residual standard deviation, potentially increasing
the uncertainties of the results obtained when the model is used to answer engineering or
scientific questions. Fortunately, many physical systems can be modeled well with straight-line,
polynomial, or simple nonlinear functions.

Quadratic
Polynomial a
Good Starting
Point

Developing
Models in
Higher
Dimensions

When the function describing the deterministic variability in the response variable depends on
several predictor (input) variables, it can be difficult to see how the different variables relate to
one another. One way to tackle this problem that often proves useful is to plot cross-sections of
the data and build up a function one dimension at a time. This approach will often shed more light
on the relationships between the different predictor variables and the response than plots that
lump different levels of one or more predictor variables together on plots of the response variable
versus another predictor variable.

4.4.2.2. Using the Data to Select an Appropriate Function
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Polymer
Relaxation
Example

For example, materials scientists are interested in how cylindrical polymer samples that have
been twisted by a fixed amount relax over time. They are also interested in finding out how
temperature may affect this process. As a result, both time and temperature are thought to be
important factors for describing the systematic variation in the relaxation data plotted below.
When the torque is plotted against time, however, the nature of the relationship is not clearly
shown. Similarly, when torque is plotted versus the temperature the effect of temperature is also
unclear. The difficulty in interpreting these plots arises because the plot of torque versus time
includes data for several different temperatures and the plot of torque versus temperature includes
data observed at different times. If both temperature and time are necessary parts of the function
that describes the data, these plots are collapsing what really should be displayed as a
three-dimensional surface onto a two-dimensional plot, muddying the picture of the data.

Polymer
Relaxation
Data

4.4.2.2. Using the Data to Select an Appropriate Function
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Multiplots
Reveal
Structure

If cross-sections of the data are plotted in multiple plots instead of lumping different explanatory
variable values together, the relationships between the variables can become much clearer. Each
cross-sectional plot below shows the relationship between torque and time for a particular
temperature. Now the relationship between torque and time for each temperature is clear. It is
also easy to see that the relationship differs for different temperatures. At a temperature of 25
degrees there is a sharp drop in torque between 0 and 20 minutes and then the relaxation slows.
At a temperature of 75 degrees, however, the relaxation drops at a rate that is nearly constant over
the whole experimental time period. The fact that the profiles of torque versus time vary with
temperature confirms that any functional description of the polymer relaxation process will need
to include temperature.

Cross-Sections
of the Data

4.4.2.2. Using the Data to Select an Appropriate Function
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Cross-Sectional
Models Provide
Further Insight

Further insight into the appropriate function to use can be obtained by separately modeling each
cross-section of the data and then relating the individual models to one another. Fitting the
accepted stretched exponential relationship between torque ( ) and time ( ),

,

to each cross-section of the polymer data and then examining plots of the estimated parameters
versus temperature roughly indicates how temperature should be incorporated into a model of the
polymer relaxation data. The individual stretched exponentials fit to each cross-section of the data
are shown in the plot above as solid curves through the data. Plots of the estimated values of each
of the four parameters in the stretched exponential versus temperature are shown below.

Cross-Section
Parameters vs.
Temperature

The solid line near the center of each plot of the cross-sectional parameters from the stretched
exponential is the mean of the estimated parameter values across all six levels of temperature.
The dashed lines above and below the solid reference line provide approximate bounds on how
much the parameter estimates could vary due to random variation in the data. These bounds are
based on the typical value of the standard deviations of the estimates from each individual
stretched exponential fit. From these plots it is clear that only the values of  significantly differ
from one another across the temperature range. In addition, there is a clear increasing trend in the
parameter estimates for . For each of the other parameters, the estimate at each temperature
falls within the uncertainty bounds and no clear structure is visible.

4.4.2.2. Using the Data to Select an Appropriate Function
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Based on the plot of estimated  values above, augmenting the  term in the standard stretched
exponential so that the new denominator is quadratic in temperature (denoted by ) should
provide a good starting model for the polymer relaxation process. The choice of a quadratic in
temperature is suggested by the slight curvature in the plot of the individually estimated
parameter values. The resulting model is

.

4.4.2.2. Using the Data to Select an Appropriate Function
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.2. How do I select a function to describe my process?

4.4.2.3.Using Methods that Do Not Require Function
Specification

Functional
Form Not
Needed, but
Some Input
Required

Although many modern regression methods, like LOESS, do not require the user to specify a
single type of function to fit the entire data set, some initial information still usually needs to be
provided by the user. Because most of these types of regression methods fit a series of simple
local models to the data, one quantity that usually must be specified is the size of the
neighborhood each simple function will describe. This type of parameter is usually called the
bandwidth or smoothing parameter for the method. For some methods the form of the simple
functions must also be specified, while for others the functional form is a fixed property of the
method.

Input
Parameters
Control
Function
Shape

The smoothing parameter controls how flexible the functional part of the model will be. This, in
turn, controls how closely the function will fit the data, just as the choice of a straight line or a
polynomial of higher degree determines how closely a traditional regression model will track the
deterministic structure in a set of data. The exact information that must be specified in order to fit
the regression function to the data will vary from method to method. Some methods may require
other user-specified parameters require, in addition to a smoothing parameter, to fit the regression
function. However, the purpose of the user-supplied information is similar for all methods.

Starting
Simple still
Best

As for more traditional methods of regression, simple regression functions are better than
complicated ones in local regression. The complexity of a regression function can be gauged by
its potential to track the data. With traditional modeling methods, in which a global function that
describes the data is given explictly, it is relatively easy to differentiate between simple and
complicated models. With local regression methods, on the other hand, it can sometimes difficult
to tell how simple a particular regression function actually is based on the inputs to the procedure.
This is because of the different ways of specifying local functions, the effects of changes in the
smoothing parameter, and the relationships between the different inputs. Generally, however, any
local functions should be as simple as possible and the smoothing parameter should be set so that
each local function is fit to a large subset of the data. For example, if the method offers a choice
of local functions, a straight line would typically be a better starting point than a higher-order
polynomial or a statistically nonlinear function.

Function
Specification
for LOESS

To use LOESS, the user must specify the degree, d, of the local polynomial to be fit to the data,
and the fraction of the data, q, to be used in each fit. In this case, the simplest possible initial
function specification is d=1 and q=1. While it is relatively easy to understand how the degree of
the local polynomial affects the simplicity of the initial model, it is not as easy to determine how
the smoothing parameter affects the function. However, plots of the data from the computational
example of LOESS in Section 1 with four potential choices of the initial regression function show
that the simplest LOESS function, with d=1 and q=1, is too simple to capture much of the
structure in the data.

4.4.2.3. Using Methods that Do Not Require Function Specification
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LOESS
Regression
Functions
with Different
Initial
Parameter
Specifications

Experience
Suggests
Good Values
to Use

Although the simplest possible LOESS function is not flexible enough to describe the data well,
any of the other functions shown in the figure would be reasonable choices. All of the latter
functions track the data well enough to allow assessment of the different assumptions that need to
be checked before deciding that the model really describes the data well. None of these functions
is probably exactly right, but they all provide a good enough fit to serve as a starting point for
model refinement. The fact that there are several LOESS functions that are similar indicates that
additional information is needed to determine the best of these functions. Although it is debatable,
experience indicates that it is probably best to keep the initial function simple and set the
smoothing parameter so each local function is fit to a relatively small subset of the data.
Accepting this principle, the best of these initial models is the one in the upper right corner of the
figure with d=1 and q=0.5.

4.4.2.3. Using Methods that Do Not Require Function Specification
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4. Process Modeling
4.4. Data Analysis for Process Modeling

4.4.3.How are estimates of the unknown
parameters obtained?

Parameter
Estimation
in General

After selecting the basic form of the functional part of the model, the
next step in the model-building process is estimation of the unknown
parameters in the function. In general, this is accomplished by solving
an optimization problem in which the objective function (the function
being minimized or maximized) relates the response variable and the
functional part of the model containing the unknown parameters in a
way that will produce parameter estimates that will be close to the true,
unknown parameter values. The unknown parameters are, loosely
speaking, treated as variables to be solved for in the optimization, and
the data serve as known coefficients of the objective function in this
stage of the modeling process.

In theory, there are as many different ways of estimating parameters as
there are objective functions to be minimized or maximized. However, a
few principles have dominated because they result in parameter
estimators that have good statistical properties. The two major methods
of parameter estimation for process models are maximum likelihood and
least squares. Both of these methods provide parameter estimators that
have many good properties. Both maximum likelihood and least squares
are sensitive to the presence of outliers, however. There are also many
newer methods of parameter estimation, called robust methods, that try
to balance the efficiency and desirable properties of least squares and
maximum likelihood with a lower sensitivity to outliers.

4.4.3. How are estimates of the unknown parameters obtained?
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Overview of
Section 4.3

Although robust techniques are valuable, they are not as well developed
as the more traditional methods and often require specialized software
that is not readily available. Maximum likelihood also requires
specialized algorithms in general, although there are important special
cases that do not have such a requirement. For example, for data with
normally distributed random errors, the least squares and maximum
likelihood parameter estimators are identical. As a result of these
software and developmental issues, and the coincidence of maximum
likelihood and least squares in many applications, this section currently
focuses on parameter estimation only by least squares methods. The
remainder of this section offers some intuition into how least squares
works and illustrates the effectiveness of this method.

Contents of
Section 4.3

Least Squares1.  

Weighted Least Squares2.  

4.4.3. How are estimates of the unknown parameters obtained?
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.3. How are estimates of the unknown parameters obtained?

4.4.3.1.Least Squares

General LS
Criterion

In least squares (LS) estimation, the unknown values of the parameters, , in the

regression function, , are estimated by finding numerical values for the parameters that

minimize the sum of the squared deviations between the observed responses and the functional
portion of the model. Mathematically, the least (sum of) squares criterion that is minimized to
obtain the parameter estimates is

As previously noted,  are treated as the variables in the optimization and the predictor
variable values,  are treated as coefficients. To emphasize the fact that the estimates
of the parameter values are not the same as the true values of the parameters, the estimates are
denoted by . For linear models, the least squares minimization is usually done

analytically using calculus. For nonlinear models, on the other hand, the minimization must
almost always be done using iterative numerical algorithms.

LS for
Straight
Line

To illustrate, consider the straight-line model,

.

For this model the least squares estimates of the parameters would be computed by minimizing

Doing this by

taking partial derivatives of  with respect to  and ,1.  

setting each partial derivative equal to zero, and2.  

solving the resulting system of two equations with two unknowns3.  

yields the following estimators for the parameters:

4.4.3.1. Least Squares
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.

These formulas are instructive because they show that the parameter estimators are functions of
both the predictor and response variables and that the estimators are not independent of each
other unless . This is clear because the formula for the estimator of the intercept depends
directly on the value of the estimator of the slope, except when the second term in the formula for

 drops out due to multiplication by zero. This means that if the estimate of the slope deviates a

lot from the true slope, then the estimate of the intercept will tend to deviate a lot from its true
value too. This lack of independence of the parameter estimators, or more specifically the
correlation of the parameter estimators, becomes important when computing the uncertainties of
predicted values from the model. Although the formulas discussed in this paragraph only apply to
the straight-line model, the relationship between the parameter estimators is analogous for more
complicated models, including both statistically linear and statistically nonlinear models.

Quality of
Least
Squares
Estimates

From the preceding discussion, which focused on how the least squares estimates of the model
parameters are computed and on the relationship between the parameter estimates, it is difficult to
picture exactly how good the parameter estimates are. They are, in fact, often quite good. The plot
below shows the data from the Pressure/Temperature example with the fitted regression line and
the true regression line, which is known in this case because the data were simulated. It is clear
from the plot that the two lines, the solid one estimated by least squares and the dashed being the
true line obtained from the inputs to the simulation, are almost identical over the range of the
data. Because the least squares line approximates the true line so well in this case, the least
squares line will serve as a useful description of the deterministic portion of the variation in the
data, even though it is not a perfect description. While this plot is just one example, the
relationship between the estimated and true regression functions shown here is fairly typical.

Comparison
of LS Line
and True
Line

4.4.3.1. Least Squares
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Quantifying
the Quality
of the Fit
for Real
Data

From the plot above it is easy to see that the line based on the least squares estimates of  and
 is a good estimate of the true line for these simulated data. For real data, of course, this type of

direct comparison is not possible. Plots comparing the model to the data can, however, provide
valuable information on the adequacy and usefulness of the model. In addition, another measure
of the average quality of the fit of a regression function to a set of data by least squares can be
quantified using the remaining parameter in the model, , the standard deviation of the error term
in the model.

Like the parameters in the functional part of the model,  is generally not known, but it can also
be estimated from the least squares equations. The formula for the estimate is

,

with  denoting the number of observations in the sample and  is the number of parameters in

the functional part of the model.  is often referred to as the "residual standard deviation" of the
process.

4.4.3.1. Least Squares

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd431.htm (3 of 4) [11/14/2003 5:50:35 PM]

http://www.itl.nist.gov/div898/handbook/pmd/section4/plots/mfpt1_f.gif


Because  measures how the individual values of the response variable vary with respect to their
true values under , it also contains information about how far from the truth quantities

derived from the data, such as the estimated values of the parameters, could be. Knowledge of the
approximate value of  plus the values of the predictor variable values can be combined to
provide estimates of the average deviation between the different aspects of the model and the
corresponding true values, quantities that can be related to properties of the process generating
the data that we would like to know.

More information on the correlation of the parameter estimators and computing uncertainties for
different functions of the estimated regression parameters can be found in Section 5.

4.4.3.1. Least Squares
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.3. How are estimates of the unknown parameters obtained?

4.4.3.2.Weighted Least Squares

As mentioned in Section 4.1, weighted least squares (WLS) regression
is useful for estimating the values of model parameters when the
response values have differing degrees of variability over the
combinations of the predictor values. As suggested by the name,
parameter estimation by the method of weighted least squares is closely
related to parameter estimation by "ordinary", "regular", "unweighted"
or "equally-weighted" least squares.

General
WLS
Criterion

In weighted least squares parameter estimation, as in regular least
squares, the unknown values of the parameters, , in the
regression function are estimated by finding the numerical values for the
parameter estimates that minimize the sum of the squared deviations
between the observed responses and the functional portion of the model.
Unlike least squares, however, each term in the weighted least squares
criterion includes an additional weight, , that determines how much
each observation in the data set influences the final parameter estimates.
The weighted least squares criterion that is minimized to obtain the
parameter estimates is

4.4.3.2. Weighted Least Squares
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Some Points
Mostly in
Common
with
Regular LS
(But Not
Always!!!)

Like regular least squares estimators:

The weighted least squares estimators are denoted by 
to emphasize the fact that the estimators are not the same as the
true values of the parameters.

1.  

 are treated as the "variables" in the optimization,

while values of the response and predictor variables and the
weights are treated as constants.

2.  

The parameter estimators will be functions of both the predictor
and response variables and will generally be correlated with one
another. (WLS estimators are also functions of the weights, .)

3.  

Weighted least squares minimization is usually done analytically
for linear models and numerically for nonlinear models.

4.  

4.4.3.2. Weighted Least Squares
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4. Process Modeling
4.4. Data Analysis for Process Modeling

4.4.4.How can I tell if a model fits my data?

 Is Not
Enough!

Model validation is possibly the most important step in the model building sequence. It is also one
of the most overlooked. Often the validation of a model seems to consist of nothing more than

quoting the  statistic from the fit (which measures the fraction of the total variability in the

response that is accounted for by the model). Unfortunately, a high  value does not guarantee
that the model fits the data well. Use of a model that does not fit the data well cannot provide good
answers to the underlying engineering or scientific questions under investigation.

Main
Tool:
Graphical
Residual
Analysis

There are many statistical tools for model validation, but the primary tool for most process
modeling applications is graphical residual analysis. Different types of plots of the residuals (see
definition below) from a fitted model provide information on the adequacy of different aspects of

the model. Numerical methods for model validation, such as the  statistic, are also useful, but
usually to a lesser degree than graphical methods. Graphical methods have an advantage over
numerical methods for model validation because they readily illustrate a broad range of complex
aspects of the relationship between the model and the data. Numerical methods for model validation
tend to be narrowly focused on a particular aspect of the relationship between the model and the
data and often try to compress that information into a single descriptive number or test result.

Numerical
Methods'
Forte

Numerical methods do play an important role as confirmatory methods for graphical techniques,
however. For example, the lack-of-fit test for assessing the correctness of the functional part of the
model can aid in interpreting a borderline residual plot. There are also a few modeling situations in
which graphical methods cannot easily be used. In these cases, numerical methods provide a
fallback position for model validation. One common situation when numerical validation methods
take precedence over graphical methods is when the number of parameters being estimated is
relatively close to the size of the data set. In this situation residual plots are often difficult to
interpret due to constraints on the residuals imposed by the estimation of the unknown parameters.
One area in which this typically happens is in optimization applications using designed
experiments. Logistic regression with binary data is another area in which graphical residual
analysis can be difficult.

Residuals The residuals from a fitted model are the differences between the responses observed at each
combination values of the explanatory variables and the corresponding prediction of the response
computed using the regression function. Mathematically, the definition of the residual for the ith
observation in the data set is written

,

with  denoting the ith response in the data set and  represents the list of explanatory variables,
each set at the corresponding values found in the ith observation in the data set.

4.4.4. How can I tell if a model fits my data?
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Example The data listed below are from the Pressure/Temperature example introduced in Section 4.1.1. The
first column shows the order in which the observations were made, the second column indicates the
day on which each observation was made, and the third column gives the ambient temperature
recorded when each measurement was made. The fourth column lists the temperature of the gas
itself (the explanatory variable) and the fifth column contains the observed pressure of the gas (the
response variable). Finally, the sixth column gives the corresponding values from the fitted
straight-line regression function.

and the last column lists the residuals, the difference between columns five and six.

Data,
Fitted
Values &
Residuals

 Run          Ambient                            Fitted
Order  Day  Temperature  Temperature  Pressure    Value    Residual
 1      1      23.820      54.749      225.066   222.920     2.146
 2      1      24.120      23.323      100.331    99.411     0.920
 3      1      23.434      58.775      230.863   238.744    -7.881
 4      1      23.993      25.854      106.160   109.359    -3.199
 5      1      23.375      68.297      277.502   276.165     1.336
 6      1      23.233      37.481      148.314   155.056    -6.741
 7      1      24.162      49.542      197.562   202.456    -4.895
 8      1      23.667      34.101      138.537   141.770    -3.232
 9      1      24.056      33.901      137.969   140.983    -3.014
10      1      22.786      29.242      117.410   122.674    -5.263
11      2      23.785      39.506      164.442   163.013     1.429
12      2      22.987      43.004      181.044   176.759     4.285
13      2      23.799      53.226      222.179   216.933     5.246
14      2      23.661      54.467      227.010   221.813     5.198
15      2      23.852      57.549      232.496   233.925    -1.429
16      2      23.379      61.204      253.557   248.288     5.269
17      2      24.146      31.489      139.894   131.506     8.388
18      2      24.187      68.476      273.931   276.871    -2.940
19      2      24.159      51.144      207.969   208.753    -0.784
20      2      23.803      68.774      280.205   278.040     2.165
21      3      24.381      55.350      227.060   225.282     1.779
22      3      24.027      44.692      180.605   183.396    -2.791
23      3      24.342      50.995      206.229   208.167    -1.938
24      3      23.670      21.602       91.464    92.649    -1.186
25      3      24.246      54.673      223.869   222.622     1.247
26      3      25.082      41.449      172.910   170.651     2.259
27      3      24.575      35.451      152.073   147.075     4.998
28      3      23.803      42.989      169.427   176.703    -7.276
29      3      24.660      48.599      192.561   198.748    -6.188
30      3      24.097      21.448       94.448    92.042     2.406
31      4      22.816      56.982      222.794   231.697    -8.902
32      4      24.167      47.901      199.003   196.008     2.996
33      4      22.712      40.285      168.668   166.077     2.592
34      4      23.611      25.609      109.387   108.397     0.990
35      4      23.354      22.971       98.445    98.029     0.416

4.4.4. How can I tell if a model fits my data?
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36      4      23.669      25.838      110.987   109.295     1.692
37      4      23.965      49.127      202.662   200.826     1.835
38      4      22.917      54.936      224.773   223.653     1.120
39      4      23.546      50.917      216.058   207.859     8.199
40      4      24.450      41.976      171.469   172.720    -1.251

Why Use
Residuals?

If the model fit to the data were correct, the residuals would approximate the random errors that
make the relationship between the explanatory variables and the response variable a statistical
relationship. Therefore, if the residuals appear to behave randomly, it suggests that the model fits
the data well. On the other hand, if non-random structure is evident in the residuals, it is a clear sign
that the model fits the data poorly. The subsections listed below detail the types of plots to use to
test different aspects of a model and give guidance on the correct interpretations of different results
that could be observed for each type of plot.

Model
Validation
Specifics

How can I assess the sufficiency of the functional part of the model?1.  

How can I detect non-constant variation across the data?2.  

How can I tell if there was drift in the process?3.  

How can I assess whether the random errors are independent from one to the next?4.  

How can I test whether or not the random errors are distributed normally?5.  

How can I test whether any significant terms are missing or misspecified in the functional
part of the model?

6.  

How can I test whether all of the terms in the functional part of the model are necessary?7.  

4.4.4. How can I tell if a model fits my data?
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.1.How can I assess the sufficiency of the
functional part of the model?

Main Tool:
Scatter Plots

Scatter plots of the residuals versus the predictor variables in the model and versus potential
predictors that are not included in the model are the primary plots used to assess sufficiency of
the functional part of the model. Plots in which the residuals do not exhibit any systematic
structure indicate that the model fits the data well. Plots of the residuals versus other predictor
variables, or potential predictors, that exhibit systematic structure indicate that the form of the
function can be improved in some way.

Pressure /
Temperature
Example

The residual scatter plot below, of the residuals from a straight line fit to the
Pressure/Temperature data introduced in Section 4.1.1. and also discussed in the previous section,
does not indicate any problems with the model. The reference line at 0 emphasizes that the
residuals are split about 50-50 between positive and negative. There are no systematic patterns

apparent in this plot. Of course, just as the  statistic cannot justify a particular model on its
own, no single residual plot can completely justify the adoption of a particular model either. If a
plot of these residuals versus another variable did show systematic structure, the form of model
with respect to that variable would need to be changed or that variable, if not in the model, would
need to be added to the model. It is important to plot the residuals versus every available variable
to ensure that a candidate model is the best model possible.

4.4.4.1. How can I assess the sufficiency of the functional part of the model?
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Importance of
Environmental
Variables

One important class of potential predictor variables that is often overlooked is environmental
variables. Environmental variables include things like ambient temperature in the area where
measurements are being made and ambient humidity. In most cases environmental variables are
not expected to have any noticeable effect on the process, but it is always good practice to check
for unanticipated problems caused by environmental conditions. Sometimes the catch-all
environmental variables can also be used to assess the validity of a model. For example, if an
experiment is run over several days, a plot of the residuals versus day can be used to check for
differences in the experimental conditions at different times. Any differences observed will not
necessarily be attributable to a specific cause, but could justify further experiments to try to
identify factors missing from the model, or other model misspecifications. The two residual plots
below show the pressure/temperature residuals versus ambient lab temperature and day. In both
cases the plots provide further evidence that the straight line model gives an adequate description
of the data. The plot of the residuals versus day does look a little suspicious with a slight cyclic
pattern between days, but doesn't indicate any overwhelming problems. It is likely that this
apparent difference between days is just due to the random variation in the data.

4.4.4.1. How can I assess the sufficiency of the functional part of the model?
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Pressure /
Temperature
Residuals vs
Environmental
Variables

4.4.4.1. How can I assess the sufficiency of the functional part of the model?
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Residual
Scatter Plots
Work Well for
All Methods

The examples of residual plots given above are for the simplest possible case, straight line
regression via least squares, but the residual plots are used in exactly the same way for almost all
of the other statistical methods used for model building. For example, the residual plot below is
for the LOESS model fit to the thermocouple calibration data introduced in Section 4.1.3.2. Like
the plots above, this plot does not signal any problems with the fit of the LOESS model to the
data. The residuals are scattered both above and below the reference line at all temperatures.
Residuals adjacent to one another in the plot do not tend to have similar signs. There are no
obvious systematic patterns of any type in this plot.

Validation of
LOESS Model
for
Thermocouple
Calibration

4.4.4.1. How can I assess the sufficiency of the functional part of the model?
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An Alternative
to the LOESS
Model

Based on the plot of voltage (response) versus the temperature (predictor) for the thermocouple
calibration data, a quadratic model would have been a reasonable initial model for these data. The
quadratic model is the simplest possible model that could account for the curvature in the data.
The scatter plot of the residuals versus temperature for a quadratic model fit to the data clearly
indicates that it is a poor fit, however. This residual plot shows strong cyclic structure in the
residuals. If the quadratic model did fit the data, then this structure would not be left behind in the
residuals. One thing to note in comparing the residual plots for the quadratic and LOESS models,
besides the amount of structure remaining in the data in each case, is the difference in the scales
of the two plots. The residuals from the quadratic model have a range that is approximately fifty
times the range of the LOESS residuals.

Validation of
the Quadratic
Model

4.4.4.1. How can I assess the sufficiency of the functional part of the model?
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.2.How can I detect non-constant variation across
the data?

Scatter Plots
Allow
Comparison
of Random
Variation
Across Data

Similar to their use in checking the sufficiency of the functional form of the model, scatter plots
of the residuals are also used to check the assumption of constant standard deviation of random
errors. Scatter plots of the residuals versus the explanatory variables and versus the predicted
values from the model allow comparison of the amount of random variation in different parts of
the data. For example, the plot below shows residuals from a straight-line fit to the
Pressure/Temperature data. In this plot the range of the residuals looks essentially constant across
the levels of the predictor variable, temperature. The scatter in the residuals at temperatures
between 20 and 30 degrees is similar to the scatter in the residuals between 40 and 50 degrees and
between 55 and 70 degrees. This suggests that the standard deviation of the random errors is the
same for the responses observed at each temperature.

Residuals
from Pressure
/ Temperature
Example

4.4.4.2. How can I detect non-constant variation across the data?

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd442.htm (1 of 6) [11/14/2003 5:50:37 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/plots/mvpt4_f.gif


Modification
of Example

To illustrate how the residuals from the Pressure/Temperature data would look if the standard
deviation was not constant across the different temperature levels, a modified version of the data
was simulated. In the modified version, the standard deviation increases with increasing values of
pressure. Situations like this, in which the standard deviation increases with increasing values of
the response, are among the most common ways that non-constant random variation occurs in
physical science and engineering applications. A plot of the data is shown below. Comparison of
these two versions of the data is interesting because in the original units of the data they don't
look strikingly different.

Pressure
Data with
Non-Constant
Residual
Standard
Deviation

Residuals
Indicate
Non-Constant
Standard
Deviation

The residual plot from a straight-line fit to the modified data, however, highlights the
non-constant standard deviation in the data. The horn-shaped residual plot, starting with residuals
close together around 20 degrees and spreading out more widely as the temperature (and the
pressure) increases, is a typical plot indicating that the assumptions of the analysis are not
satisfied with this model. Other residual plot shapes besides the horn shape could indicate
non-constant standard deviation as well. For example, if the response variable for a data set
peaked in the middle of the range of the predictors and was small for extreme values of the
predictors, the residuals plotted versus the predictors would look like two horns with the bells
facing one another. In a case like this, a plot of the residuals versus the predicted values would
exhibit the single horn shape, however.

4.4.4.2. How can I detect non-constant variation across the data?
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Residuals
from Modified
Pressure
Data

Residual
Plots
Comparing
Variability
Apply to Most
Methods

The use of residual plots to check the assumption of constant standard deviation works in the
same way for most modeling methods. It is not limited to least squares regression even though
that is almost always the context in which it is explained. The plot below shows the residuals
from a LOESS fit to the data from the Thermocouple Calibration example. The even spread of the
residuals across the range of the data does not indicate any changes in the standard deviation,
leading us to the conclusion that this assumption is not unreasonable for these data.

Residuals
from LOESS
Fit to
Thermocouple
Calibration
Data

4.4.4.2. How can I detect non-constant variation across the data?
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Correct
Function
Needed to
Check for
Constant
Standard
Deviation

One potential pitfall in using residual plots to check for constant standard deviation across the
data is that the functional part of the model must adequately describe the systematic variation in
the data. If that is not the case, then the typical horn shape observed in the residuals could be due
to an artifact of the function fit to the data rather than to non-constant variation. For example, in
the Polymer Relaxation example it was hypothesized that both time and temperature are related to
the response variable, torque. However, if a single stretched exponential model in time was the
initial model used for the process, the residual plots could be misinterpreted fairly easily, leading
to the false conclusion that the standard deviation is not constant across the data. When the
functional part of the model does not fit the data well, the residuals do not reflect purely random
variations in the process. Instead, they reflect the remaining structure in the data not accounted
for by the function. Because the residuals are not random, they cannot be used to answer
questions about the random part of the model. This also emphasizes the importance of plotting the
data before fitting the initial model, even if a theoretical model for the data is available. Looking
at the data before fitting the initial model, at least in this case, would likely forestall this potential
problem.

4.4.4.2. How can I detect non-constant variation across the data?
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Polymer
Relaxation
Data Modeled
as a Single
Stretched
Exponential

Residuals
from Single
Stretched
Exponential
Model
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Getting Back
on Course
After a Bad
Start

Fortunately, even if the initial model were incorrect, and the residual plot above was made, there
are clues in this plot that indicate that the horn shape (pointing left this time) is not caused by
non-constant standard deviation. The cluster of residuals at time zero that have a residual torque
near one indicate that the functional part of the model does not fit the data. In addition, even when
the residuals occur with equal frequency above and below zero, the spacing of the residuals at
each time does not really look random. The spacing is too regular to represent random
measurement errors. At measurement times near the low end of the scale, the spacing of the
points increases as the residuals decrease and at the upper end of the scale the spacing decreases
as the residuals decrease. The patterns in the spacing of the residuals also points to the fact that
the functional form of the model is not correct and needs to be corrected before drawing
conclusions about the distribution of the residuals.

4.4.4.2. How can I detect non-constant variation across the data?
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.3.How can I tell if there was drift in the
measurement process?

Run Order
Plots Reveal
Drift in the
Process

"Run order" or "run sequence" plots of the residuals are used to check for drift in the process. The
run order residual plot is a special type of scatter plot in which each residual is plotted versus an
index that indicates the order (in time) in which the data were collected. This plot is useful,
however, only if data have been collected in a randomized run order, or some other order that is
not increasing or decreasing in any of the predictor variables used in the model. If the data have
been collected in a time order that is increasing or decreasing with the predictor variables, then
any drift in the process may not be able to be separated from the functional relationship between
the predictors and the response. This is why randomization is emphasized in experiment design.

Pressure /
Temperature
Example

To show in a more concrete way how run order plots work, the plot below shows the residuals
from a straight-line fit to the Pressure/Temperature data plotted in run order. Comparing the run
order plot to a listing of the data with the residuals shows how the residual for the first data point
collected is plotted versus the run order index value 1, the second residual is plotted versus an
index value of 2, and so forth.

Run
Sequence
Plot for the
Pressure /
Temperature
Data

4.4.4.3. How can I tell if there was drift in the measurement process?
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No Drift
Indicated

Taken as a whole, this plot essentially shows that there is only random scatter in the relationship
between the observed pressures and order in which the data were collected, rather than any
systematic relationship. Although there appears to be a slight trend in the residuals when plotted
in run order, the trend is small when measured against short-term random variation in the data,
indicating that it is probably not a real effect. The presence of this apparent trend does emphasize,
however, that practice and judgment are needed to correctly interpret these plots. Although
residual plots are a very useful tool, if critical judgment is not used in their interpretation, you can
see things that aren't there or miss things that are. One hint that the slight slope visible in the data
is not worrisome in this case is the fact that the residuals overlap zero across all runs. If the
process was drifting significantly, it is likely that there would be some parts of the run sequence
in which the residuals would not overlap zero. If there is still some doubt about the slight trend
visible in the data after using this graphical procedure, a term describing the drift can be added to
the model and tested numerically to see if it has a significant impact on the results.

Modification
of Example

To illustrate how the residuals from the Pressure/Temperature data would look if there were drift
in the process, a modified version of the data was simulated. A small drift of 0.3
units/measurement was added to the process. A plot of the data is shown below. In this run
sequence plot a clear, strong trend is visible and there are portions of the run order where the
residuals do not overlap zero. Because the structure is so evident in this case, it is easy to
conclude that some sort of drift is present. Then, of course, its cause needs to be determined so
that appropriate steps can be taken to eliminate the drift from the process or to account for it in
the model.

4.4.4.3. How can I tell if there was drift in the measurement process?
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Run
Sequence
Plot for
Pressure /
Temperature
Data with
Drift

 As in the case when the standard deviation was not constant across the data set, comparison of
these two versions of the data is interesting because the drift is not apparent in either data set
when viewed in the scale of the data. This highlights the need for graphical residual analysis
when developing process models.

Applicable
to Most
Regression
Methods

The run sequence plot, like most types of residual plots, can be used to check for drift in many
regression methods. It is not limited to least squares fitting or one particular type of model. The
run sequence plot below shows the residuals from the fit of the nonlinear model

to the data from the Polymer Relaxation example. The even spread of the residuals across the
range of the data indicates that there is no apparent drift in this process.
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Run
Sequence
Plot for
Polymer
Relaxation
Data
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.4.How can I assess whether the random errors are
independent from one to the next?

Lag Plot
Shows
Dependence
Between
Residuals

The lag plot of the residuals, another special type of scatter plot, suggests whether or not the
errors are independent. If the errors are not independent, then the estimate of the error standard
deviation will be biased, potentially leading to improper inferences about the process. The lag
plot works by plotting each residual value versus the value of the successive residual (in
chronological order of observation). The first residual is plotted versus the second, the second
versus the third, etc. Because of the way the residuals are paired, there will be one less point on
this plot than on most other types of residual plots.

Interpretation If the errors are independent, there should be no pattern or structure in the lag plot. In this case
the points will appear to be randomly scattered across the plot in a scattershot fashion. If there is
significant dependence between errors, however, some sort of deterministic pattern will likely be
evident.

Examples Lag plots for the Pressure/Temperature example, the Thermocouple Calibration example, and the
Polymer Relaxation example are shown below. The lag plots for these three examples suggest
that the errors from each fit are independent. In each case, the residuals are randomly scattered
about the origin with no apparent structure. The last plot, for the Polymer Relaxation data, shows
an apparent slight correlation between the residuals and the lagged residuals, but experience
suggests that this could easily be due to random error and is not likely to be a real issue. In fact,
the lag plot can also emphasize outlying observations and a few of the larger residuals (in
absolute terms) may be pulling our eyes unduly. The normal probability plot, which is also good
at identifying outliers, will be discussed next, and will shed further light on any unusual points in
the data set.

Lag Plot:
Temperature /
Pressure
Example

4.4.4.4. How can I assess whether the random errors are independent from one to the next?
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Lag Plot:
Thermocouple
Calibration
Example
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Lag Plot:
Polymer
Relaxation
Example
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Next Steps Some of the different patterns that might be found in the residuals when the errors are not
independent are illustrated in the general discussion of the lag plot. If the residuals are not
random, then time series methods might be required to fully model the data. Some time series
basics are given in Section 4 of the chapter on Process Monitoring. Before jumping to
conclusions about the need for time series methods, however, be sure that a run order plot does
not show any trends, or other structure, in the data. If there is a trend in the run order plot,
whether caused by drift or by the use of the wrong functional form, the source of the structure
shown in the run order plot will also induce structure in the lag plot. Structure induced in the lag
plot in this way does not necessarily indicate dependence in successive random errors. The lag
plot can only be interpreted clearly after accounting for any structure in the run order plot.
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.5.How can I test whether or not the random errors
are distributed normally?

Histogram
and Normal
Probability
Plot Used for
Normality
Checks

The histogram and the normal probability plot are used to check whether or not it is reasonable to
assume that the random errors inherent in the process have been drawn from a normal
distribution. The normality assumption is needed for the error rates we are willing to accept when
making decisions about the process. If the random errors are not from a normal distribution,
incorrect decisions will be made more or less frequently than the stated confidence levels for our
inferences indicate.

Normal
Probability
Plot

The normal probability plot is constructed by plotting the sorted values of the residuals versus the
associated theoretical values from the standard normal distribution. Unlike most residual scatter
plots, however, a random scatter of points does not indicate that the assumption being checked is
met in this case. Instead, if the random errors are normally distributed, the plotted points will lie
close to straight line. Distinct curvature or other signficant deviations from a straight line indicate
that the random errors are probably not normally distributed. A few points that are far off the line
suggest that the data has some outliers in it.

Examples Normal probability plots for the Pressure/Temperature example, the Thermocouple Calibration
example, and the Polymer Relaxation example are shown below. The normal probability plots for
these three examples indicate that that it is reasonable to assume that the random errors for these
processes are drawn from approximately normal distributions. In each case there is a strong linear
relationship between the residuals and the theoretical values from the standard normal
distribution. Of course the plots do show that the relationship is not perfectly deterministic (and it
never will be), but the linear relationship is still clear. Since none of the points in these plots
deviate much from the linear relationship defined by the residuals, it is also reasonable to
conclude that there are no outliers in any of these data sets.

Normal
Probability
Plot:
Temperature /
Pressure
Example
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Normal
Probability
Plot:
Thermocouple
Calibration
Example
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Normal
Probability
Plot: Polymer
Relaxation
Example
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Further
Discussion
and Examples

If the random errors from one of these processes were not normally distributed, then significant
curvature may have been visible in the relationship between the residuals and the quantiles from
the standard normal distribution, or there would be residuals at the upper and/or lower ends of the
line that clearly did not fit the linear relationship followed by the bulk of the data. Examples of
some typical cases obtained with non-normal random errors are illustrated in the general
discussion of the normal probability plot.

Histogram The normal probability plot helps us determine whether or not it is reasonable to assume that the
random errors in a statistical process can be assumed to be drawn from a normal distribution. An
advantage of the normal probability plot is that the human eye is very sensitive to deviations from
a straight line that might indicate that the errors come from a non-normal distribution. However,
when the normal probability plot suggests that the normality assumption may not be reasonable, it
does not give us a very good idea what the distribution does look like. A histogram of the
residuals from the fit, on the other hand, can provide a clearer picture of the shape of the
distribution. The fact that the histogram provides more general distributional information than
does the normal probability plot suggests that it will be harder to discern deviations from
normality than with the more specifically-oriented normal probability plot.

Examples Histograms for the three examples used to illustrate the normal probability plot are shown below.
The histograms are all more-or-less bell-shaped, confirming the conclusions from the normal
probability plots. Additional examples can be found in the gallery of graphical techniques.

4.4.4.5. How can I test whether or not the random errors are distributed normally?
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Histogram:
Temperature /
Pressure
Example

Histogram:
Thermocouple
Calibration
Example
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Histogram:
Polymer
Relaxation
Example
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Important
Note

One important detail to note about the normal probability plot and the histogram is that they
provide information on the distribution of the random errors from the process only if

the functional part of the model is correctly specified,1.  

the standard deviation is constant across the data,2.  

there is no drift in the process, and3.  

the random errors are independent from one run to the next.4.  

If the other residual plots indicate problems with the model, the normal probability plot and
histogram will not be easily interpretable.
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http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd445.htm (7 of 7) [11/14/2003 5:50:38 PM]

http://www.itl.nist.gov/div898/handbook/pmd/section4/plots/mvpr6_f.gif
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/


4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.6.How can I test whether any
significant terms are missing or
misspecified in the functional part
of the model?

Statistical
Tests Can
Augment
Ambiguous
Residual Plots

Although the residual plots discussed on pages 4.4.4.1 and 4.4.4.3 will
often indicate whether any important variables are missing or
misspecified in the functional part of the model, a statistical test of the
hypothesis that the model is sufficient may be helpful if the plots leave
any doubt. Although it may seem tempting to use this type of
statistical test in place of residual plots since it apparently assesses the
fit of the model objectively, no single test can provide the rich
feedback to the user that a graphical analysis of the residuals can
provide. Furthermore, while model completeness is one of the most
important aspects of model adequacy, this type of test does not address
other important aspects of model quality. In statistical jargon, this type
of test for model adequacy is usually called a "lack-of-fit" test.

General
Strategy

The most common strategy used to test for model adequacy is to
compare the amount of random variation in the residuals from the data
used to fit the model with an estimate of the random variation in the
process using data that are independent of the model. If these two
estimates of the random variation are similar, that indicates that no
significant terms are likely to be missing from the model. If the
model-dependent estimate of the random variation is larger than the
model-independent estimate, then significant terms probably are
missing or misspecified in the functional part of the model.

4.4.4.6. How can I test whether any significant terms are missing or misspecified in the functional part of the model?
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Testing Model
Adequacy
Requires
Replicate
Measurements

The need for a model-independent estimate of the random variation
means that replicate measurements made under identical experimental
conditions are required to carry out a lack-of-fit test. If no replicate
measurements are available, then there will not be any baseline
estimate of the random process variation to compare with the results
from the model. This is the main reason that the use of replication is
emphasized in experimental design.

Data Used to
Fit Model
Can Be
Partitioned to
Compute
Lack-of-Fit
Statistic

Although it might seem like two sets of data would be needed to carry
out the lack-of-fit test using the strategy described above, one set of
data to fit the model and compute the residual standard deviation and
the other to compute the model-independent estimate of the random
variation, that is usually not necessary. In most regression
applications, the same data used to fit the model can also be used to
carry out the lack-of-fit test, as long as the necessary replicate
measurements are available. In these cases, the lack-of-fit statistic is
computed by partitioning the residual standard deviation into two
independent estimators of the random variation in the process. One
estimator depends on the model and the sample means of the

replicated sets of data ( ), while the other estimator is a pooled
standard deviation based on the variation observed in each set of

replicated measurements ( ). The squares of these two estimators of
the random variation are often called the "mean square for lack-of-fit"
and the "mean square for pure error," respectively, in statistics texts.

The notation  and  is used here instead to emphasize the fact
that, if the model fits the data, these quantities should both be good
estimators of .

Estimating 
Using
Replicate
Measurements

The model-independent estimator of  is computed using the formula

with  denoting the sample size of the data set used to fit the model,
 is the number of unique combinations of predictor variable levels,

 is the number of replicated observations at the ith combination of
predictor variable levels, the  are the regression responses indexed
by their predictor variable levels and number of replicate
measurements, and  is the mean of the responses at the itth

combination of predictor variable levels. Notice that the formula for

4.4.4.6. How can I test whether any significant terms are missing or misspecified in the functional part of the model?
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 depends only on the data and not on the functional part of the

model. This shows that  will be a good estimator of , regardless of
whether the model is a complete description of the process or not.

Estimating 
Using the
Model

Unlike the formula for , the formula for 

(with  denoting the number of unknown parameters in the model)
does depend on the functional part of the model. If the model were
correct, the value of the function would be a good estimate of the
mean value of the response for every combination of predictor variable
values. When the function provides good estimates of the mean

response at the ith combination, then  should be close in value to 
and should also be a good estimate of . If, on the other hand, the
function is missing any important terms (within the range of the data),
or if any terms are misspecified, then the function will provide a poor
estimate of the mean response for some combinations of the predictors

and  will tend to be greater than .

Carrying Out
the Test for
Lack-of-Fit

Combining the ideas presented in the previous two paragraphs,
following the general strategy outlined above, the adequacy of the
functional part of the model can be assessed by comparing the values

of  and . If , then one or more important terms may be
missing or misspecified in the functional part of the model. Because of

the random error in the data, however, we know that  will

sometimes be larger than  even when the model is adequate. To
make sure that the hypothesis that the model is adequate is not rejected

by chance, it is necessary to understand how much greater than  the

value of  might typically be when the model does fit the data. Then

the hypothesis can be rejected only when  is significantly greater

than .
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 When the model does fit the data, it turns out that the ratio

follows an F distribution. Knowing the probability distribution that
describes the behavior of the statistic, , we can control the
probability of rejecting the hypothesis that the model is adequate in
cases when the model actually is adequate. Rejecting the hypothesis
that the model is adequate only when  is greater than an upper-tail
cut-off value from the F distribution with a user-specified probability
of wrongly rejecting the hypothesis gives us a precise, objective,

probabilistic definition of when  is significantly greater than .
The user-specified probability used to obtain the cut-off value from the
F distribution is called the "significance level" of the test. The
significance level for most statistical tests is denoted by . The most
commonly used value for the significance level is , which
means that the hypothesis of an adequate model will only be rejected
in 5% of tests for which the model really is adequate. Cut-off values
can be computed using most statistical software or from tables of the F
distribution. In addition to needing the significance level to obtain the
cut-off value, the F distribution is indexed by the degrees of freedom

associated with each of the two estimators of . , which appears in

the numerator of , has  degrees of freedom. , which
appears in the denominator of , has  degrees of freedom.

Alternative
Formula for

Although the formula given above more clearly shows the nature of

, the numerically equivalent formula below is easier to use in
computations

.
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can I tell if a model fits my data?

4.4.4.7.How can I test whether all of the terms in the
functional part of the model are necessary?

Unnecessary
Terms in the
Model Affect
Inferences

Models that are generally correct in form, but that include extra, unnecessary terms are said to
"over-fit" the data. The term over-fitting is used to describe this problem because the extra terms
in the model make it more flexible than it should be, allowing it to fit some of the random
variation in the data as if it were deterministic structure. Because the parameters for any
unnecessary terms in the model usually have estimated values near zero, it may seem as though
leaving them in the model would not hurt anything. It is true, actually, that having one or two
extra terms in the model does not usually have much negative impact. However, if enough extra
terms are left in the model, the consequences can be serious. Among other things, including
unnecessary terms in the model can cause the uncertainties estimated from the data to be larger
than necessary, potentially impacting scientific or engineering conclusions to be drawn from the
analysis of the data.

Empirical
and Local
Models
Most Prone
to
Over-fitting
the Data

Over-fitting is especially likely to occur when developing purely empirical models for processes
when there is no external understanding of how much of the total variation in the data might be
systematic and how much is random. It also happens more frequently when using regression
methods that fit the data locally instead of using an explicitly specified function to describe the
structure in the data. Explicit functions are usually relatively simple and have few terms. It is
usually difficult to know how to specify an explicit function that fits the noise in the data, since
noise will not typically display much structure. This is why over-fitting is not usually a problem
with these types of models. Local models, on the other hand, can easily be made to fit very
complex patterns, allowing them to find apparent structure in process noise if care is not
exercised.

Statistical
Tests for
Over-fitting

Just as statistical tests can be used to check for significant missing or misspecified terms in the
functional part of a model, they can also be used to determine if any unnecessary terms have
been included. In fact, checking for over-fitting of the data is one area in which statistical tests
are more effective than residual plots. To test for over-fitting, however, individual tests of the
importance of each parameter in the model are used rather than following using a single test as
done when testing for terms that are missing or misspecified in the model.

Tests of
Individual
Parameters

Most output from regression software also includes individual statistical tests that compare the
hypothesis that each parameter is equal to zero with the alternative that it is not zero. These tests
are convenient because they are automatically included in most computer output, do not require
replicate measurements, and give specific information about each parameter in the model.
However, if the different predictor variables included in the model have values that are
correlated, these tests can also be quite difficult to interpret. This is because these tests are
actually testing whether or not each parameter is zero given that all of the other predictors are
included in the model.

4.4.4.7. How can I test whether all of the terms in the functional part of the model are necessary?
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Test
Statistics
Based on
Student's t
Distribution

The test statistics for testing whether or not each parameter is zero are typically based on
Student's t distribution. Each parameter estimate in the model is measured in terms of how many
standard deviations it is from its hypothesized value of zero. If the parameter's estimated value is
close enough to the hypothesized value that any deviation can be attributed to random error, the
hypothesis that the parameter's true value is zero is not rejected. If, on the other hand, the
parameter's estimated value is so far away from the hypothesized value that the deviation cannot
be plausibly explained by random error, the hypothesis that the true value of the parameter is
zero is rejected.

Because the hypothesized value of each parameter is zero, the test statistic for each of these tests
is simply the estimated parameter value divided by its estimated standard deviation,

which provides a measure of the distance between the estimated and hypothesized values of the
parameter in standard deviations. Based on the assumptions that the random errors are normally
distributed and the true value of the parameter is zero (as we have hypothesized), the test statistic
has a Student's t distribution with  degrees of freedom. Therefore, cut-off values for the t
distribution can be used to determine how extreme the test statistic must be in order for each
parameter estimate to be too far away from its hypothesized value for the deviation to be
attributed to random error. Because these tests are generally used to simultaneously test whether
or not a parameter value is greater than or less than zero, the tests should each be used with
cut-off values with a significance level of . This will guarantee that the hypothesis that each
parameter equals zero will be rejected by chance with probability . Because of the symmetry of
the t distribution, only one cut-off value, the upper or the lower one, needs to be determined, and
the other will be it's negative. Equivalently, many people simply compare the absolute value of
the test statistic to the upper cut-off value.

Parameter
Tests for the
Pressure /
Temperature
Example

To illustrate the use of the individual tests of the significance of each parameter in a model, the
Dataplot output for the Pressure/Temperature example is shown below. In this case a
straight-line model was fit to the data, so the output includes tests of the significance of the
intercept and slope. The estimates of the intercept and the slope are 7.75 and 3.93, respectively.
Their estimated standard deviations are listed in the next column followed by the test statistics to
determine whether or not each parameter is zero. At the bottom of the output the estimate of the
residual standard deviation, , and its degrees of freedom are also listed.

4.4.4.7. How can I test whether all of the terms in the functional part of the model are necessary?
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Dataplot
Output:
Pressure /
Temperature
Example

LEAST SQUARES POLYNOMIAL FIT
SAMPLE SIZE N       =       40
DEGREE              =        1
NO REPLICATION CASE

      PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
 1  A0                   7.74899       ( 2.354    )        3.292
 2  A1                   3.93014       (0.5070E-01)        77.51

RESIDUAL    STANDARD DEVIATION =         4.299098
RESIDUAL    DEGREES OF FREEDOM =          38

Looking up the cut-off value from the tables of the t distribution using a significance level of
 and 38 degrees of freedom yields a cut-off value of 2.024 (the cut-off is obtained

from the column labeled "0.025" since this is a two-sided test and 0.05/2 = 0.025). Since both of
the test statistics are larger in absolute value than the cut-off value of 2.024, the appropriate
conclusion is that both the slope and intercept are significantly different from zero at the 95%
confidence level.

4.4.4.7. How can I test whether all of the terms in the functional part of the model are necessary?

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd447.htm (3 of 3) [11/14/2003 5:50:39 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/


4. Process Modeling
4.4. Data Analysis for Process Modeling

4.4.5. If my current model does not fit the
data well, how can I improve it?

What Next? Validating a model using residual plots, formal hypothesis tests and
descriptive statistics would be quite frustrating if discovery of a
problem meant restarting the modeling process back at square one.
Fortunately, however, there are also techniques and tools to remedy
many of the problems uncovered using residual analysis. In some cases
the model validation methods themselves suggest appropriate changes
to a model at the same time problems are uncovered. This is especially
true of the graphical tools for model validation, though tests on the
parameters in the regression function also offer insight into model
refinement. Treatments for the various model deficiencies that were
diagnosed in Section 4.4.4. are demonstrated and discussed in the
subsections listed below.

Methods for
Model
Improvement

Updating the Function Based on Residual Plots1.  

Accounting for Non-Constant Variation Across the Data2.  

Accounting for Errors with a Non-Normal Distribution3.  

4.4.5. If my current model does not fit the data well, how can I improve it?
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.5. If my current model does not fit the data well, how can I improve it?

4.4.5.1.Updating the Function Based on Residual Plots

Residual
Plots Guide
Model
Refinement

If the plots of the residuals used to check the adequacy of the functional part of the model indicate
problems, the structure exhibited in the plots can often be used to determine how to improve the
functional part of the model. For example, suppose the initial model fit to the thermocouple
calibration data was a quadratic polynomial. The scatter plot of the residuals versus temperature
showed that there was structure left in the data when this model was used.

Residuals vs
Temperature:
Quadratic
Model

The shape of the residual plot, which looks like a cubic polynomial, suggests that adding another
term to the polynomial might account for the structure left in the data by the quadratic model.
After fitting the cubic polynomial, the magnitude of the residuals is reduced by a factor of about
30, indicating a big improvement in the model.

4.4.5.1. Updating the Function Based on Residual Plots
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Residuals vs
Temperature:
Cubic Model

Increasing
Residual
Complexity
Suggests
LOESS
Model

Although the model is improved, there is still structure in the residuals. Based on this structure, a
higher-degree polynomial looks like it would fit the data. Polynomial models become numerically
unstable as their degree increases, however. Therfore, after a few iterations like this, leading to
polynomials of ever-increasing degree, the structure in the residuals is indicating that a
polynomial does not actually describe the data very well. As a result, a different type of model,
such as a nonlinear model or a LOESS model, is probably more appropriate for these data. The
type of model needed to describe the data, however, can be arrived at systematically using the
structure in the residuals at each step.

4.4.5.1. Updating the Function Based on Residual Plots
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.5. If my current model does not fit the data well, how can I improve it?

4.4.5.2.Accounting for Non-Constant Variation Across the
Data

Two Basic
Approaches:
Transformation and
Weighting

There are two basic approaches to obtaining improved parameter estimators for data in which the
standard deviation of the error is not constant across all combinations of predictor variable values:

transforming the data so it meets the standard assumptions, and1.  

using weights in the parameter estimation to account for the unequal standard deviations.2.  

Both methods work well in a wide range of situations. The choice of which to use often hinges on
personal preference because in many engineering and industrial applications the two methods
often provide practically the same results. In fact, in most experiments there is usually not enough
data to determine which of the two models works better. Sometimes, however, when there is
scientific information about the nature of the model, one method or the other may be preferred
because it is more consistent with an existing theory. In other cases, the data may make one of the
methods more convenient to use than the other.

Using
Transformations

The basic steps for using transformations to handle data with unequal subpopulation standard
deviations are:

Transform the response variable to equalize the variation across the levels of the predictor
variables.

1.  

Transform the predictor variables, if necessary, to attain or restore a simple functional form
for the regression function.

2.  

Fit and validate the model in the transformed variables.3.  

Transform the predicted values back into the original units using the inverse of the
transformation applied to the response variable.

4.  

Typical
Transformations for
Stabilization of
Variation

Appropriate transformations to stabilize the variability may be suggested by scientific knowledge
or selected using the data. Three transformations that are often effective for equalizing the
standard deviations across the values of the predictor variables are:

,1.  

 (note: the base of the logarithm does not really matter), and2.  

.3.  

Other transformations can be considered, of course, but in a surprisingly wide range of problems
one of these three transformations will work well. As a result, these are good transformations to
start with, before moving on to more specialized transformations.

4.4.5.2. Accounting for Non-Constant Variation Across the Data
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Modified Pressure /
Temperature Example

To illustrate how to use transformations to stabilize the variation in the data, we will return to the
modified version of the Pressure/Temperature example. The residuals from a straight-line fit to
that data clearly showed that the standard deviation of the measurements was not constant across
the range of temperatures.

Residuals from
Modified Pressure
Data

Stabilizing the
Variation

The first step in the process is to compare different transformations of the response variable,
pressure, to see which one, if any, stabilizes the variation across the range of temperatures. The
straight-line relationship will not hold for all of the transformations, but at this stage of the
process that is not a concern. The functional relationship can usually be corrected after stabilizing
the variation. The key for this step is to find a transformation that makes the uncertainty in the
data approximately the same at the lowest and highest temperatures (and in between). The plot
below shows the modified Pressure/Temperature data in its original units, and with the response
variable transformed using each of the three typical transformations. Remember you can click on
the plot to see a larger view for easier comparison.

Transformations of
the Pressure

4.4.5.2. Accounting for Non-Constant Variation Across the Data
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Inverse Pressure Has
Constant Variation

After comparing the effects of the different transformations, it looks like using the inverse of the
pressure will make the standard deviation approximately constant across all temperatures.
However, it is somewhat difficult to tell how the standard deviations really compare on a plot of
this size and scale. To better see the variation, a full-sized plot of temperature versus the inverse
of the pressure is shown below. In that plot it is easier to compare the variation across
temperatures. For example, comparing the variation in the pressure values at a temperature of
about 25 with the variation in the pressure values at temperatures near 45 and 70, this plot shows
about the same level of variation at all three temperatures. It will still be critical to look at
residual plots after fitting the model to the transformed variables, however, to really see whether
or not the transformation we've chosen is effective. The residual scale is really the only scale that
can reveal that level of detail.

Enlarged View of
Temperature Versus
1/Pressure

4.4.5.2. Accounting for Non-Constant Variation Across the Data
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Transforming
Temperature to
Linearity

Having found a transformation that appears to stabilize the standard deviations of the
measurements, the next step in the process is to find a transformation of the temperature that will
restore the straight-line relationship, or some other simple relationship, between the temperature
and pressure. The same three basic transformations that can often be used to stabilize the
variation are also usually able to transform the predictor to restore the original relationship
between the variables. Plots of the temperature and the three transformations of the temperature
versus the inverse of the pressure are shown below.

Transformations of
the Temperature

4.4.5.2. Accounting for Non-Constant Variation Across the Data
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 Comparing the plots of the various transformations of the temperature versus the inverse of the
pressure, it appears that the straight-line relationship between the variables is restored when the
inverse of the temperature is used. This makes intuitive sense because if the temperature and
pressure are related by a straight line, then the same transformation applied to both variables
should change them both similarly, retaining their original relationship. Now, after fitting a
straight line to the transformed data, the residuals plotted versus both the transformed and original
values of temperature indicate that the straight-line model fits the data and that the random
variation no longer increases with increasing temperature. Additional diagnostic plots of the
residuals confirm that the model fits the data well.

Residuals From the
Fit to the
Transformed Data

4.4.5.2. Accounting for Non-Constant Variation Across the Data
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Using Weighted Least
Squares

As discussed in the overview of different methods for building process models, the goal when
using weighted least squares regression is to ensure that each data point has an appropriate level
of influence on the final parameter estimates. Using the weighted least squares fitting criterion,
the parameter estimates are obtained by minimizing

.

Optimal results, which minimize the uncertainty in the parameter estimators, are obtained when
the weights, , used to estimate the values of the unknown parameters are inversely proportional
to the variances at each combination of predictor variable values:

.

Unfortunately, however, these optimal weights, which are based on the true variances of each
data point, are never known. Estimated weights have to be used instead. When estimated weights
are used, the optimality properties associated with known weights no longer strictly apply.
However, if the weights can be estimated with high enough precision, their use can significantly
improve the parameter estimates compared to the results that would be obtained if all of the data
points were equally weighted.

Direct Estimation of
Weights

If there are replicates in the data, the most obvious way to estimate the weights is to set the
weight for each data point equal to the reciprocal of the sample variance obtained from the set of
replicate measurements to which the data point belongs. Mathematically, this would be

where

 are the weights indexed by their predictor variable levels and replicate measurements,●   

 indexes the unique combinations of predictor variable values,●   

 indexes the replicates within each combination of predictor variable values,●   

 is the sample standard deviation of the response variable at the ith combination of

predictor variable values,

●   

 is the number of replicate observations at the ith combination of predictor variable
values,

●   

 are the individual data points indexed by their predictor variable levels and replicate
measurements,

●   

 is the mean of the responses at the ith combination of predictor variable levels.●   

4.4.5.2. Accounting for Non-Constant Variation Across the Data
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Unfortunately, although this method is attractive, it rarely works well. This is because when the
weights are estimated this way, they are usually extremely variable. As a result, the estimated
weights do not correctly control how much each data point should influence the parameter
estimates. This method can work, but it requires a very large number of replicates at each
combination of predictor variables. In fact, if this method is used with too few replicate
measurements, the parameter estimates can actually be more variable than they would have been
if the unequal variation were ignored.

A Better Strategy for
Estimating the
Weights

A better strategy for estimating the weights is to find a function that relates the standard deviation
of the response at each combination of predictor variable values to the predictor variables
themselves. This means that if

(denoting the unknown parameters in the function  by ), then the weights can be set to

This approach to estimating the weights usually provides more precise estimates than direct
estimation because fewer quantities have to be estimated and there is more data to estimate each
one.

Estimating Weights
Without Replicates

If there are only very few or no replicate measurements for each combination of predictor
variable values, then approximate replicate groups can be formed so that weights can be
estimated. There are several possible approaches to forming the replicate groups.

One method is to manually form the groups based on plots of the response against the
predictor variables. Although this allows a lot of flexibility to account for the features of a
specific data set, it often impractical. However, this approach may be useful for relatively
small data sets in which the spacing of the predictor variable values is very uneven.

1.  

Another approach is to divide the data into equal-sized groups of observations after sorting
by the values of the response variable. It is important when using this approach not to make
the size of the replicate groups too large. If the groups are too large, the standard deviations
of the response in each group will be inflated because the approximate replicates will differ
from each other too much because of the deterministic variation in the data. Again, plots of
the response variable versus the predictor variables can be used as a check to confirm that
the approximate sets of replicate measurements look reasonable.

2.  

A third approach is to choose the replicate groups based on ranges of predictor variable
values. That is, instead of picking groups of a fixed size, the ranges of the predictor
variables are divided into equal size increments or bins and the responses in each bin are
treated as replicates. Because the sizes of the groups may vary, there is a tradeoff in this
case between defining the intervals for approximate replicates to be too narrow or too wide.
As always, plots of the response variable against the predictor variables can serve as a
guide.

3.  

Although the exact estimates of the weights will be somewhat dependent on the approach used to
define the replicate groups, the resulting weighted fit is typically not particularly sensitive to
small changes in the definition of the weights when the weights are based on a simple, smooth
function.

4.4.5.2. Accounting for Non-Constant Variation Across the Data
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Power Function
Model for the Weights

One particular function that often works well for modeling the variances is a power of the mean
at each combination of predictor variable values,

.

Iterative procedures for simultaneously fitting a weighted least squares model to the original data
and a power function model for the weights are discussed in Carroll and Ruppert (1988), and
Ryan (1997).

Fitting the Model for
Estimation of the
Weights

When fitting the model for the estimation of the weights,

,

it is important to note that the usual regression assumptions do not hold. In particular, the
variation of the random errors is not constant across the different sets of replicates and their
distribution is not normal. However, this can be often be accounted for by using transformations
(the ln transformation often stabilizes the variation), as described above.

Validating the Model
for Estimation of the
Weights

Of course, it is always a good idea to check the assumptions of the analysis, as in any
model-building effort, to make sure the model of the weights seems to fit the weight data
reasonably well. The fit of the weights model often does not need to meet all of the usual
standards to be effective, however.

Using Weighted
Residuals to Validate
WLS Models

Once the weights have been estimated and the model has been fit to the original data using
weighted least squares, the validation of the model follows as usual, with one exception. In a
weighted analysis, the distribution of the residuals can vary substantially with the different values
of the predictor variables. This necessitates the use of weighted residuals [Graybill and Iyer
(1994)] when carrying out a graphical residual analysis so that the plots can be interpreted as
usual. The weighted residuals are given by the formula

.

It is important to note that most statistical software packages do not compute and return weighted
residuals when a weighted fit is done, so the residuals will usually have to be weighted manually
in an additional step. If after computing a weighted least squares fit using carefully estimated
weights, the residual plots still show the same funnel-shaped pattern as they did for the initial
equally-weighted fit, it is likely that you may have forgotten to compute or plot the weighted
residuals.

4.4.5.2. Accounting for Non-Constant Variation Across the Data

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd452.htm (9 of 14) [11/14/2003 5:50:41 PM]



Example of WLS
Using the Power
Function Model

The power function model for the weights, mentioned above, is often especially convenient when
there is only one predictor variable. In this situation the general model given above can usually be
simplified to the power function

,

which does not require the use of iterative fitting methods. This model will be used with the
modified version of the Pressure/Temperature data, plotted below, to illustrate the steps needed to
carry out a weighted least squares fit.

Modified
Pressure/Temperature
Data

Defining Sets of
Approximate
Replicate
Measurements

From the data, plotted above, it is clear that there are not many true replicates in this data set. As
a result, sets of approximate replicate measurements need to be defined in order to use the power
function model to estimate the weights. In this case, this was done by rounding a multiple of the
temperature to the nearest degree and then converting the rounded data back to the original scale.

This is an easy way to identify sets of measurements that have temperatures that are relatively
close together. If this process had produced too few sets of replicates, a smaller factor than three
could have been used to spread the data out further before rounding. If fewer replicate sets were
needed, then a larger factor could have been used. The appropriate value to use is a matter of
judgment. An ideal value is one that doesn't combine values that are too different and that yields
sets of replicates that aren't too different in size. A table showing the original data, the rounded
temperatures that define the approximate replicates, and the replicate standard deviations is listed
below.

4.4.5.2. Accounting for Non-Constant Variation Across the Data
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Data with
Approximate
Replicates

               Rounded              Standard
Temperature  Temperature  Pressure  Deviation
---------------------------------------------
   21.602        21        91.423    0.192333
   21.448        21        91.695    0.192333
   23.323        24        98.883    1.102380
   22.971        24        97.324    1.102380
   25.854        27       107.620    0.852080
   25.609        27       108.112    0.852080
   25.838        27       109.279    0.852080
   29.242        30       119.933   11.046422
   31.489        30       135.555   11.046422
   34.101        33       139.684    0.454670
   33.901        33       139.041    0.454670
   37.481        36       150.165    0.031820
   35.451        36       150.210    0.031820
   39.506        39       164.155    2.884289
   40.285        39       168.234    2.884289
   43.004        42       180.802    4.845772
   41.449        42       172.646    4.845772
   42.989        42       169.884    4.845772
   41.976        42       171.617    4.845772
   44.692        45       180.564          NA
   48.599        48       191.243    5.985219
   47.901        48       199.386    5.985219
   49.127        48       202.913    5.985219
   49.542        51       196.225    9.074554
   51.144        51       207.458    9.074554
   50.995        51       205.375    9.074554
   50.917        51       218.322    9.074554
   54.749        54       225.607    2.040637
   53.226        54       223.994    2.040637
   54.467        54       229.040    2.040637
   55.350        54       227.416    2.040637
   54.673        54       223.958    2.040637
   54.936        54       224.790    2.040637
   57.549        57       230.715   10.098899
   56.982        57       216.433   10.098899
   58.775        60       224.124   23.120270
   61.204        60       256.821   23.120270
   68.297        69       276.594    6.721043
   68.476        69       267.296    6.721043
   68.774        69       280.352    6.721043

4.4.5.2. Accounting for Non-Constant Variation Across the Data
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Transformation of the
Weight Data

With the replicate groups defined, a plot of the ln of the replicate variances versus the ln of the
temperature shows the transformed data for estimating the weights does appear to follow the
power function model. This is because the ln-ln transformation linearizes the power function, as
well as stabilizing the variation of the random errors and making their distribution approximately
normal.

Transformed Data for
Weight Estimation
with Fitted Model

Specification of
Weight Function

The Splus output from the fit of the weight estimation model is shown below. Based on the output
and the associated residual plots, the model of the weights seems reasonable, and

should be an appropriate weight function for the modified Pressure/Temperature data. The weight
function is based only on the slope from the fit to the transformed weight data because the
weights only need to be proportional to the replicate variances. As a result, we can ignore the
estimate of  in the power function since it is only a proportionality constant (in original units of
the model). The exponent on the temperature in the weight function is usually rounded to the
nearest digit or single decimal place for convenience, since that small change in the weight

4.4.5.2. Accounting for Non-Constant Variation Across the Data

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd452.htm (12 of 14) [11/14/2003 5:50:41 PM]

http://www.itl.nist.gov/div898/handbook/pmd/section4/plots/mipt08_f.gif
http://www.itl.nist.gov/div898/handbook/pmd/section4/dep/dep452b.htm


function will not affect the results of the final fit significantly.

Output from Weight
Estimation Fit Residual Standard Error = 3.0245

Multiple R-Square = 0.3642

N = 14,  

F-statistic = 6.8744 on 1 and 12 df, p-value = 0.0223

                    coef std.err  t.stat p.value
Intercept       -20.5896  8.4994 -2.4225  0.0322
ln(Temperature)   6.0230  2.2972  2.6219  0.0223

Fit of the WLS Model
to the Pressure /
Temperature Data

With the weight function estimated, the fit of the model with weighted least squares produces the
residual plot below. This plot, which shows the weighted residuals from the fit versus
temperature, indicates that use of the estimated weight function has stabilized the increasing
variation in pressure observed with increasing temperature. The plot of the data with the
estimated regression function and additional residual plots using the weighted residuals confirm
that the model fits the data well.

Weighted Residuals
from WLS Fit of
Pressure /
Temperature Data

4.4.5.2. Accounting for Non-Constant Variation Across the Data
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Comparison of
Transformed and
Weighted Results

Having modeled the data using both transformed variables and weighted least squares to account
for the non-constant standard deviations observed in pressure, it is interesting to compare the two
resulting models. Logically, at least one of these two models cannot be correct (actually, probably
neither one is exactly correct). With the random error inherent in the data, however, there is no
way to tell which of the two models actually describes the relationship between pressure and
temperature better. The fact that the two models lie right on top of one another over almost the
entire range of the data tells us that. Even at the highest temperatures, where the models diverge
slightly, both models match the small amount of data that is available reasonably well. The only
way to differentiate between these models is to use additional scientific knowledge or collect a lot
more data. The good news, though, is that the models should work equally well for predictions or
calibrations based on these data, or for basic understanding of the relationship between
temperature and pressure.

4.4.5.2. Accounting for Non-Constant Variation Across the Data
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4. Process Modeling
4.4. Data Analysis for Process Modeling
4.4.5. If my current model does not fit the data well, how can I improve it?

4.4.5.3.Accounting for Errors with a Non-Normal
Distribution

Basic Approach:
Transformation

Unlike when correcting for non-constant variation in the random errors, there is really only one
basic approach to handling data with non-normal random errors for most regression methods.
This is because most methods rely on the assumption of normality and the use of linear estimation
methods (like least squares) to make probabilistic inferences to answer scientific or engineering
questions. For methods that rely on normality of the data, direct manipulation of the data to make
the random errors approximately normal is usually the best way to try to bring the data in line
with this assumption. The main alternative to transformation is to use a fitting criterion that
directly takes the distribution of the random errors into account when estimating the unknown
parameters. Using these types of fitting criteria, such as maximum likelihood, can provide very
good results. However, they are often much harder to use than the general fitting criteria used in
most process modeling methods.

Using
Transformations

The basic steps for using transformations to handle data with non-normally distributed random
errors are essentially the same as those used to handle non-constant variation of the random
errors.

Transform the response variable to make the distribution of the random errors
approximately normal.

1.  

Transform the predictor variables, if necessary, to attain or restore a simple functional form
for the regression function.

2.  

Fit and validate the model in the transformed variables.3.  

Transform the predicted values back into the original units using the inverse of the
transformation applied to the response variable.

4.  

The main difference between using transformations to account for non-constant variation and
non-normality of the random errors is that it is harder to directly see the effect of a transformation
on the distribution of the random errors. It is very often the case, however, that non-normality and
non-constant standard deviation of the random errors go together, and that the same
transformation will correct both problems at once. In practice, therefore, if you choose a
transformation to fix any non-constant variation in the data, you will often also improve the
normality of the random errors. If the data appear to have non-normally distributed random
errors, but do have a constant standard deviation, you can always fit models to several sets of
transformed data and then check to see which transformation appears to produce the most
normally distributed residuals.

4.4.5.3. Accounting for Errors with a Non-Normal Distribution
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Typical
Transformations for
Meeting
Distributional
Assumptions

Not surprisingly, three transformations that are often effective for making the distribution of the
random errors approximately normal are:

,1.  

 (note: the base of the logarithm does not really matter), and2.  

.3.  

These are the same transformations often used for stabilizing the variation in the data. Other
appropriate transformations to improve the distributional properties of the random errors may be
suggested by scientific knowledge or selected using the data. However, these three
transformations are good ones to start with since they work well in so many situations.

Example To illustrate how to use transformations to change the distribution of the random errors, we will
look at a modified version of the Pressure/Temperature example in which the errors are uniformly
distributed. Comparing the results obtained from fitting the data in their original units and under
different transformations will directly illustrate the effects of the transformations on the
distribution of the random errors.

Modified
Pressure/Temperature
Data with Uniform
Random Errors
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Fit of Model to the
Untransformed Data

A four-plot of the residuals obtained after fitting a straight-line model to the
Pressure/Temperature data with uniformly distributed random errors is shown below. The
histogram and normal probability plot on the bottom row of the four-plot are the most useful plots
for assessing the distribution of the residuals. In this case the histogram suggests that the
distribution is more rectangular than bell-shaped, indicating the random errors a not likely to be
normally distributed. The curvature in the normal probability plot also suggests that the random
errors are not normally distributed. If the random errors were normally distributed the normal
probability plots should be a fairly straight line. Of course it wouldn't be perfectly straight, but
smooth curvature or several points lying far from the line are fairly strong indicators of
non-normality.

Residuals from
Straight-Line Model
of Untransformed
Data with Uniform
Random Errors

Selection of
Appropriate
Transformations

Going through a set of steps similar to those used to find transformations to stabilize the random
variation, different pairs of transformations of the response and predictor which have a simple
functional form and will potentially have more normally distributed residuals are chosen. In the
multiplots below, all of the possible combinations of basic transformations are applied to the
temperature and pressure to find the pairs which have simple functional forms. In this case, which
is typical, the the data with square root-square root, ln-ln, and inverse-inverse tranformations all
appear to follow a straight-line model. The next step will be to fit lines to each of these sets of
data and then to compare the residual plots to see whether any have random errors which appear
to be normally distributed.

4.4.5.3. Accounting for Errors with a Non-Normal Distribution
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sqrt(Pressure) vs
Different
Tranformations of
Temperature

log(Pressure) vs
Different
Tranformations of
Temperature
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1/Pressure vs
Different
Tranformations of
Temperature

Fit of Model to
Transformed
Variables

The normal probability plots and histograms below show the results of fitting straight-line models
to the three sets of transformed data. The results from the fit of the model to the data in its
original units are also shown for comparison. From the four normal probability plots it looks like
the model fit using the ln-ln transformations produces the most normally distributed random
errors. Because the normal probability plot for the ln-ln data is so straight, it seems safe to
conclude that taking the ln of the pressure makes the distribution of the random errors
approximately normal. The histograms seem to confirm this since the histogram of the ln-ln data
looks reasonably bell-shaped while the other histograms are not particularly bell-shaped.
Therefore, assuming the other residual plots also indicated that a straight line model fit this
transformed data, the use of ln-ln tranformations appears to be appropriate for analysis of this
data.

Residuals from the Fit
to the Transformed
Variables

4.4.5.3. Accounting for Errors with a Non-Normal Distribution

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd453.htm (5 of 7) [11/14/2003 5:50:42 PM]

http://www.itl.nist.gov/div898/handbook/pmd/section4/plots/mipt19_f.gif


Residuals from the Fit
to the Transformed
Variables
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4. Process Modeling

4.5.Use and Interpretation of Process
Models

Overview of
Section 4.5

This section covers the interpretation and use of the models developed
from the collection and analysis of data using the procedures discussed
in Section 4.3 and Section 4.4. Three of the main uses of such models,
estimation, prediction and calibration, are discussed in detail.
Optimization, another important use of this type of model, is primarily
discussed in Chapter 5: Process Improvement.

Contents of
Section 4.5

What types of predictions can I make using the model?

How do I estimate the average response for a particular set
of predictor variable values?

1.  

How can I predict the value and and estimate the
uncertainty of a single response?

2.  

1.  

How can I use my process model for calibration?

Single-Use Calibration Intervals1.  

2.  

How can I optimize my process using the process model?3.  

4.5. Use and Interpretation of Process Models
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4. Process Modeling
4.5. Use and Interpretation of Process Models

4.5.1.What types of predictions can I make
using the model?

Detailed
Information
on
Prediction

This section details some of the different types of predictions that can be
made using the various process models whose development is discussed
in Section 4.1 through Section 4.4. Computational formulas or
algorithms are given for each different type of estimation or prediction,
along with simulation examples showing its probabilisitic interpretation.
An introduction to the different types of estimation and prediction can
be found in Section 4.1.3.1. A brief description of estimation and
prediction versus the other uses of process models is given in Section
4.1.3.

Different
Types of
Predictions

How do I estimate the average response for a particular set of
predictor variable values?

1.  

How can I predict the value and and estimate the uncertainty of a
single response?

2.  

4.5.1. What types of predictions can I make using the model?

http://www.itl.nist.gov/div898/handbook/pmd/section5/pmd51.htm [11/14/2003 5:50:48 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/


4. Process Modeling
4.5. Use and Interpretation of Process Models
4.5.1. What types of predictions can I make using the model?

4.5.1.1.How do I estimate the average response for a
particular set of predictor variable values?

Step 1: Plug
Predictors
Into
Estimated
Function

Once a model that gives a good description of the process has been developed, it can be used for
estimation or prediction. To estimate the average response of the process, or, equivalently, the
value of the regression function, for any particular combination of predictor variable values, the
values of the predictor variables are simply substituted in the estimated regression function itself.
These estimated function values are often called "predicted values" or "fitted values".

Pressure /
Temperature
Example

For example, in the Pressure/Temperature process, which is well described by a straight-line
model relating pressure ( ) to temperature ( ), the estimated regression function is found to be

by substituting the estimated parameter values into the functional part of the model. Then to
estimate the average pressure at a temperature of 65, the predictor value of interest is subsituted in
the estimated regression function, yielding an estimated pressure of 263.21.

This estimation process works analogously for nonlinear models, LOESS models, and all other
types of functional process models.

Polymer
Relaxation
Example

Based on the output from fitting the stretched exponential model in time ( ) and temperature (
), the estimated regression function for the polymer relaxation data is

.

Therefore, the estimated torque ( ) on a polymer sample after 60 minutes at a temperature of 40 is
5.26.

4.5.1.1. How do I estimate the average response for a particular set of predictor variable values?
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Uncertainty
Needed

Knowing that the estimated average pressure is 263.21 at a temperature of 65, or that the
estimated average torque on a polymer sample under particular conditions is 5.26, however, is not
enough information to make scientific or engineering decisions about the process. This is because
the pressure value of 263.21 is only an estimate of the average pressure at a temperature of 65.
Because of the random error in the data, there is also random error in the estimated regression
parameters, and in the values predicted using the model. To use the model correctly, therefore, the
uncertainty in the prediction must also be quantified. For example, if the safe operational pressure
of a particular type of gas tank that will be used at a temperature of 65 is 300, different
engineering conclusions would be drawn from knowing the average actual pressure in the tank is
likely to lie somewhere in the range  versus lying in the range .

Confidence
Intervals

In order to provide the necessary information with which to make engineering or scientific
decisions, predictions from process models are usually given as intervals of plausible values that
have a probabilistic interpretation. In particular, intervals that specify a range of values that will
contain the value of the regression function with a pre-specified probability are often used. These
intervals are called confidence intervals. The probability with which the interval will capture the
true value of the regression function is called the confidence level, and is most often set by the
user to be 0.95, or 95% in percentage terms. Any value between 0% and 100% could be specified,
though it would almost never make sense to consider values outside a range of about 80% to 99%.
The higher the confidence level is set, the more likely the true value of the regression function is
to be contained in the interval. The trade-off for high confidence, however, is wide intervals. As
the sample size is increased, however, the average width of the intervals typically decreases for
any fixed confidence level. The confidence level of an interval is usually denoted symbolically
using the notation , with  denoting a user-specified probability, called the significance
level, that the interval will not capture the true value of the regression function. The significance
level is most often set to be 5% so that the associated confidence level will be 95%.

Computing
Confidence
Intervals

Confidence intervals are computed using the estimated standard deviations of the estimated
regression function values and a coverage factor that controls the confidence level of the interval
and accounts for the variation in the estimate of the residual standard deviation.

The standard deviations of the predicted values of the estimated regression function depend on the
standard deviation of the random errors in the data, the experimental design used to collect the
data and fit the model, and the values of the predictor variables used to obtain the predicted
values. These standard deviations are not simple quantities that can be read off of the output
summarizing the fit of the model, but they can often be obtained from the software used to fit the
model. This is the best option, if available, because there are a variety of numerical issues that can
arise when the standard deviations are calculated directly using typical theoretical formulas.
Carefully written software should minimize the numerical problems encountered. If necessary,
however, matrix formulas that can be used to directly compute these values are given in texts such
as Neter, Wasserman, and Kutner.

4.5.1.1. How do I estimate the average response for a particular set of predictor variable values?
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The coverage factor used to control the confidence level of the intervals depends on the
distributional assumption about the errors and the amount of information available to estimate the
residual standard deviation of the fit. For procedures that depend on the assumption that the
random errors have a normal distribution, the coverage factor is typically a cut-off value from the
Student's t distribution at the user's pre-specified confidence level and with the same number of
degrees of freedom as used to estimate the residual standard deviation in the fit of the model.
Tables of the t distribution (or functions in software) may be indexed by the confidence level (

) or the significance level ( ). It is also important to note that since these are two-sided
intervals, half of the probability denoted by the significance level is usually assigned to each side
of the interval, so the proper entry in a t table or in a software function may also be labeled with
the value of , or , if the table or software is not exclusively designed for use with
two-sided tests.

 The estimated values of the regression function, their standard deviations, and the coverage factor
are combined using the formula

with  denoting the estimated value of the regression function,  is the coverage factor,

indexed by a function of the significance level and by its degrees of freedom, and  is the
standard deviation of . Some software may provide the total uncertainty for the confidence
interval given by the equation above, or may provide the lower and upper confidence bounds by
adding and subtracting the total uncertainty from the estimate of the average response. This can
save some computational effort when making predictions, if available. Since there are many types
of predictions that might be offered in a software package, however, it is a good idea to test the
software on an example for which confidence limits are already available to make sure that the
software is computing the expected type of intervals.

Confidence
Intervals for
the Example
Applications

Computing confidence intervals for the average pressure in the Pressure/Temperature example,
for temperatures of 25, 45, and 65, and for the average torque on specimens from the polymer
relaxation example at different times and temperatures gives the results listed in the tables below.
Note: the number of significant digits shown in the tables below is larger than would normally be
reported. However, as many significant digits as possible should be carried throughout all
calculations and results should only be rounded for final reporting. If reported numbers may be
used in further calculations, they should not be rounded even when finally reported. A useful rule
for rounding final results that will not be used for further computation is to round all of the

reported values to one or two significant digits in the total uncertainty, . This is the
convention for rounding that has been used in the tables below.

Pressure /
Temperature
Example

Lower 95%
Confidence

Bound

Upper 95%
Confidence

Bound

25 106.0025 1.1976162 2.024394 2.424447 103.6 108.4

45 184.6053 0.6803245 2.024394 1.377245 183.2 186.0

65 263.2081 1.2441620 2.024394 2.518674 260.7 265.7
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Polymer
Relaxation
Example

Lower 95%
Confidence

Bound

Upper 95%
Confidence

Bound

20 25 5.586307 0.028402 2.000298 0.056812 5.529 5.643

80 25 4.998012 0.012171 2.000298 0.024346 4.974 5.022

20 50 6.960607 0.013711 2.000298 0.027427 6.933 6.988

80 50 5.342600 0.010077 2.000298 0.020158 5.322 5.363

20 75 7.521252 0.012054 2.000298 0.024112 7.497 7.545

80 75 6.220895 0.013307 2.000298 0.026618 6.194 6.248

Interpretation
of Confidence
Intervals

As mentioned above, confidence intervals capture the true value of the regression function with a
user-specified probability, the confidence level, using the estimated regression function and the
associated estimate of the error. Simulation of many sets of data from a process model provides a
good way to obtain a detailed understanding of the probabilistic nature of these intervals. The
advantage of using simulation is that the true model parameters are known, which is never the
case for a real process. This allows direct comparison of how confidence intervals constructed
from a limited amount of data relate to the true values that are being estimated.

The plot below shows 95% confidence intervals computed using 50 independently generated data
sets that follow the same model as the data in the Pressure/Temperature example. Random errors
from a normal distribution with a mean of zero and a known standard deviation are added to each
set of true temperatures and true pressures that lie on a perfect straight line to obtain the simulated
data. Then each data set is used to compute a confidence interval for the average pressure at a
temperature of 65. The dashed reference line marks the true value of the average pressure at a
temperature of 65.

Confidence
Intervals
Computed
from 50 Sets
of Simulated
Data
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Confidence
Level
Specifies
Long-Run
Interval
Coverage

From the plot it is easy to see that not all of the intervals contain the true value of the average
pressure. Data sets 16, 26, and 39 all produced intervals that did not cover the true value of the
average pressure at a temperature of 65. Sometimes the interval may fail to cover the true value
because the estimated pressure is unusually high or low because of the random errors in the data
set. In other cases, the variability in the data may be underestimated, leading to an interval that is
too short to cover the true value. However, for 47 out of 50, or approximately 95% of the data
sets, the confidence intervals did cover the true average pressure. When the number of data sets
was increased to 5000, confidence intervals computed for 4723, or 94.46%, of the data sets
covered the true average pressure. Finally, when the number of data sets was increased to 10000,
95.12% of the confidence intervals computed covered the true average pressure. Thus, the
simulation shows that although any particular confidence interval might not cover its associated
true value, in repeated experiments this method of constructing intervals produces intervals that
cover the true value at the rate specified by the user as the confidence level. Unfortunately, when
dealing with real processes with unknown parameters, it is impossible to know whether or not a
particular confidence interval does contain the true value. It is nice to know that the error rate can
be controlled, however, and can be set so that it is far more likely than not that each interval
produced does contain the true value.

Interpretation
Summary

To summarize the interpretation of the probabilistic nature of confidence intervals in words: in
independent, repeated experiments,  of the intervals will cover the true values,
given that the assumptions needed for the construction of the intervals hold.

4.5.1.1. How do I estimate the average response for a particular set of predictor variable values?
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4. Process Modeling
4.5. Use and Interpretation of Process Models
4.5.1. What types of predictions can I make using the model?

4.5.1.2.How can I predict the value and and estimate the
uncertainty of a single response?

A Different
Type of
Prediction

In addition to estimating the average value of the response variable for a given combination of preditor
values, as discussed on the previous page, it is also possible to make predictions of the values of new
measurements or observations from a process. Unlike the true average response, a new measurement is
often actually observable in the future. However, there are a variety of different situations in which a
prediction of a measurement value may be more desirable than actually making an observation from
the process.

Example For example, suppose that a concrete supplier needs to supply concrete of a specified measured
strength for a particular contract, but knows that strength varies systematically with the ambient
temperature when the concrete is poured. In order to be sure that the concrete will meet the
specification, prior to pouring, samples from the batch of raw materials can be mixed, poured, and
measured in advance, and the relationship between temperature and strength can be modeled. Then
predictions of the strength across the range of possible field temperatures can be used to ensure the
product is likely to meet the specification. Later, after the concrete is poured (and the temperature is
recorded), the accuracy of the prediction can be verified.

The mechanics of predicting a new measurement value associated with a combination of predictor
variable values are similar to the steps used in the estimation of the average response value. In fact, the
actual estimate of the new measured value is obtained by evaluating the estimated regression function
at the relevant predictor variable values, exactly as is done for the average response. The estimates are
the same for these two quantities because, assuming the model fits the data, the only difference
between the average response and a particular measured response is a random error. Because the error
is random, and has a mean of zero, there is no additional information in the model that can be used to
predict the particular response beyond the information that is available when predicting the average
response.

Uncertainties
Do Differ

As when estimating the average response, a probabilistic interval is used when predicting a new
measurement to provide the information needed to make engineering or scientific conclusions.
However, even though the estimates of the average response and particular response values are the
same, the uncertainties of the two estimates do differ. This is because the uncertainty of the measured
response must include both the uncertainty of the estimated average response and the uncertainty of
the new measurement that could conceptually be observed. This uncertainty must be included if the
interval that will be used to summarize the prediction result is to contain the new measurement with
the specified confidence. To help distinguish the two types of predictions, the probabilistic intervals
for estimation of a new measurement value are called prediction intervals rather than confidence
intervals.

4.5.1.2. How can I predict the value and and estimate the uncertainty of a single response?

http://www.itl.nist.gov/div898/handbook/pmd/section5/pmd512.htm (1 of 5) [11/14/2003 5:50:49 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Standard
Deviation of
Prediction

The estimate of the standard deviation of the predicted value, , is obtained as described earlier.

Because the residual standard deviation describes the random variation in each individual
measurement or observation from the process, , the estimate of the residual standard deviation
obtained when fitting the model to the data, is used to account for the extra uncertainty needed to
predict a measurement value. Since the new observation is independent of the data used to fit the
model, the estimates of the two standard deviations are then combined by "root-sum-of-squares" or "in
quadrature", according to standard formulas for computing variances, to obtain the standard deviation
of the prediction of the new measurement, . The formula for  is

.

Coverage
Factor and
Prediction
Interval
Formula

Because both  and  are mathematically nothing more than different scalings of , and coverage

factors from the t distribution only depend on the amount of data available for estimating , the
coverage factors are the same for confidence and prediction intervals. Combining the coverage factor
and the standard deviation of the prediction, the formula for constructing prediction intervals is given
by

.

As with the computation of confidence intervals, some software may provide the total uncertainty for
the prediction interval given the equation above, or may provide the lower and upper prediction
bounds. As suggested before, however, it is a good idea to test the software on an example for which
prediction limits are already available to make sure that the software is computing the expected type of
intervals.

Prediction
Intervals for
the Example
Applications

Computing prediction intervals for the measured pressure in the Pressure/Temperature example, at
temperatures of 25, 45, and 65, and for the measured torque on specimens from the polymer relaxation
example at different times and temperatures, gives the results listed in the tables below. Note: the
number of significant digits shown is larger than would normally be reported. However, as many
significant digits as possible should be carried throughout all calculations and results should only be
rounded for final reporting. If reported numbers may be used in further calculations, then they should
not be rounded even when finally reported. A useful rule for rounding final results that will not be
used for further computation is to round all of the reported values to one or two significant digits in the
total uncertainty, . This is the convention for rounding that has been used in the tables

below.

Pressure /
Temperature
Example

Lower 95%
Prediction

Bound

Upper 95%
Prediction

Bound

25 106.0025 4.299099 1.1976162 4.462795 2.024394 9.034455 97.0 115.0

45 184.6053 4.299099 0.6803245 4.352596 2.024394 8.811369 175.8 193.5

65 263.2081 4.299099 1.2441620 4.475510 2.024394 9.060197 254.1 272.3

4.5.1.2. How can I predict the value and and estimate the uncertainty of a single response?
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Polymer
Relaxation
Example

Lower
95%

Prediction
Bound

Upper
95%

Prediction
Bound

20 25 5.586307 0.04341221 0.02840153 0.05187742 2.000298 0.10377030 5.48 5.69

80 25 4.998012 0.04341221 0.01217109 0.04508609 2.000298 0.09018560 4.91 5.09

20 50 6.960607 0.04341221 0.01371149 0.04552609 2.000298 0.09106573 6.87 7.05

80 50 5.342600 0.04341221 0.01007761 0.04456656 2.000298 0.08914639 5.25 5.43

20 75 7.521252 0.04341221 0.01205401 0.04505462 2.000298 0.09012266 7.43 7.61

80 75 6.220895 0.04341221 0.01330727 0.04540598 2.000298 0.09082549 6.13 6.31

Interpretation
of Prediction
Intervals

Simulation of many sets of data from a process model provides a good way to obtain a detailed
understanding of the probabilistic nature of the prediction intervals. The main advantage of using
simulation is that it allows direct comparison of how prediction intervals constructed from a limited
amount of data relate to the measured values that are being estimated.

The plot below shows 95% prediction intervals computed from 50 independently generated data sets
that follow the same model as the data in the Pressure/Temperature example. Random errors from the
normal distribution with a mean of zero and a known standard deviation are added to each set of true
temperatures and true pressures that lie on a perfect straight line to produce the simulated data. Then
each data set is used to compute a prediction interval for a newly observed pressure at a temperature of
65. The newly observed measurements, observed after making the prediction, are noted with an "X"
for each data set.

Prediction
Intervals
Computed
from 50 Sets
of Simulated
Data

4.5.1.2. How can I predict the value and and estimate the uncertainty of a single response?

http://www.itl.nist.gov/div898/handbook/pmd/section5/pmd512.htm (3 of 5) [11/14/2003 5:50:49 PM]



Confidence
Level
Specifies
Long-Run
Interval
Coverage

From the plot it is easy to see that not all of the intervals contain the pressure values observed after the
prediction was made. Data set 4 produced an interval that did not capture the newly observed pressure
measurement at a temperature of 65. However, for 49 out of 50, or not much over 95% of the data sets,
the prediction intervals did capture the measured pressure. When the number of data sets was
increased to 5000, prediction intervals computed for 4734, or 94.68%, of the data sets covered the new
measured values. Finally, when the number of data sets was increased to 10000, 94.92% of the
confidence intervals computed covered the true average pressure. Thus, the simulation shows that
although any particular prediction interval might not cover its associated new measurement, in
repeated experiments this method produces intervals that contain the new measurements at the rate
specified by the user as the confidence level.

Comparison
with
Confidence
Intervals

It is also interesting to compare these results to the analogous results for confidence intervals. Clearly
the most striking difference between the two plots is in the sizes of the uncertainties. The uncertainties
for the prediction intervals are much larger because they must include the standard deviation of a
single new measurement, as well as the standard deviation of the estimated average response value.
The standard deviation of the estimated average response value is lower because a lot of the random
error that is in each measurement cancels out when the data are used to estimate the unknown
parameters in the model. In fact, if as the sample size increases, the limit on the width of a confidence
interval approaches zero while the limit on the width of the prediction interval as the sample size
increases approaches . Understanding the different types of intervals and the bounds on
interval width can be important when planning an experiment that requires a result to have no more
than a specified level of uncertainty to have engineering value.

Interpretation
Summary

To summarize the interpretation of the probabilistic nature of confidence intervals in words: in
independent, repeated experiments,  of the intervals will be expected cover their true
values, given that the assumptions needed for the construction of the intervals hold.

4.5.1.2. How can I predict the value and and estimate the uncertainty of a single response?
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4. Process Modeling
4.5. Use and Interpretation of Process Models

4.5.2.How can I use my process model for
calibration?

Detailed
Calibration
Information

This section details some of the different types of calibrations that can
be made using the various process models whose development was
discussed in previous sections. Computational formulas or algorithms
are given for each different type of calibration, along with simulation
examples showing its probabilistic interpretation. An introduction to
calibration can be found in Section 4.1.3.2. A brief comparison of
calibration versus the other uses of process models is given in Section
4.1.3. Additional information on calibration is available in Section 3 of
Chapter 2: Measurement Process Characterization.

Calibration
Procedures

Single-Use Calibration Intervals1.  

4.5.2. How can I use my process model for calibration?
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4. Process Modeling
4.5. Use and Interpretation of Process Models
4.5.2. How can I use my process model for calibration?

4.5.2.1.Single-Use Calibration Intervals

Calibration As mentioned in Section 1.3, the goal of calibration (also called inverse prediction by some
authors) is to quantitatively convert measurements made on one of two measurement scales to the
other measurement scale. Typically the two scales are not of equal importance, so the conversion
occurs in only one direction. The model fit to the data that relates the two measurement scales and
a new measurement made on the secondary scale provide the means for the conversion. The
results from the fit of the model also allow for computation of the associated uncertainty in the
estimate of the true value on the primary measurement scale. Just as for prediction, estimates of
both the value on the primary scale and its uncertainty are needed in order to make sound
engineering or scientific decisions or conclusions. Approximate confidence intervals for the true
value on the primary measurement scale are typically used to summarize the results
probabilistically. An example, which will help make the calibration process more concrete, is
given in Section 4.1.3.2. using thermocouple calibration data.

Calibration
Estimates

Like prediction estimates, calibration estimates can be computed relatively easily using the
regression equation. They are computed by setting a newly observed value of the response

variable, , which does not have an accompanying value of the predictor variable, equal to the
estimated regression function and solving for the unknown value of the predictor variable.
Depending on the complexity of the regression function, this may be done analytically, but
sometimes numerical methods are required. Fortunatel, the numerical methods needed are not
complicated, and once implemented are often easier to use than analytical methods, even for
simple regression functions.

Pressure /
Temperature
Example In the Pressure/Temperature example, pressure measurements could be used to measure the

temperature of the system by observing a new pressure value, setting it equal to the estimated
regression function,

and solving for the temperature. If a pressure of 178 were measured, the associated temperature
would be estimated to be about 43.

4.5.2.1. Single-Use Calibration Intervals
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Although this is a simple process for the straight-line model, note that even for this simple
regression function the estimate of the temperature is not linear in the parameters of the model.

Numerical
Approach

To set this up to be solved numerically, the equation simply has to be set up in the form

and then the function of temperature ( ) defined by the left-hand side of the equation can be used
as the argument in an arbitrary root-finding function. It is typically necessary to provide the
root-finding software with endpoints on opposite sides of the root. These can be obtained from a
plot of the calibration data and usually do not need to be very precise. In fact, it is often adequate
to simply set the endpoints equal to the range of the calibration data, since calibration functions
tend to be increasing or decreasing functions without local minima or maxima in the range of the
data. For the pressure/temperature data, the endpoints used in the root-finding software could
even be set to values like -5 and 100, broader than the range of the data. This choice of end points
would even allow for extrapolation if new pressure values outside the range of the original
calibration data were observed.

Thermocouple
Calibration
Example

For the more realistic thermocouple calibration example, which is well fit by a LOESS model that
does not require an explicit functional form, the numerical approach must be used to obtain
calibration estimates. The LOESS model is set up identically to the straight-line model for the
numerical solution, using the estimated regression function from the software used to fit the
model.

Again the function of temperature ( ) on the left-hand side of the equation would be used as the

main argument in an arbitrary root-finding function. If for some reason  were not

available in the software used to fit the model, it could always be created manually since LOESS
can ultimately be reduced to a series of weighted least squares fits. Based on the plot of the
thermocouple data, endpoints of 100 and 600 would probably work well for all calibration
estimates. Wider values for the endpoints are not useful here since extrapolations do not make
much sense for this type of local model.

Dataplot
Code

Since the verbal descriptions of these numerical techniques can be hard to follow, these ideas may
become clearer by looking at the actual Dataplot computer code for a quadratic calibration, which
can be found in the Load Cell Calibration case study. If you have downloaded Dataplot and
installed it, you can run the computations yourself.

4.5.2.1. Single-Use Calibration Intervals
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Calibration
Uncertainties

As in prediction, the data used to fit the process model can also be used to determine the
uncertainty of the calibration. Both the variation in the average response and in the new
observation of the response value need to be accounted for. This is similar to the uncertainty for
the prediction of a new measurement. In fact, approximate calibration confidence intervals are
actually computed by solving for the predictor variable value in the formulas for prediction
interval end points [Graybill (1976)]. Because , the standard deviation of the prediction of a

measured response, is a function of the predictor variable, like the regression function itself, the
inversion of the prediction interval endpoints is usually messy. However, like the inversion of the
regression function to obtain estimates of the predictor variable, it can be easily solved
numerically.

The equations to be solved to obtain approximate lower and upper calibration confidence limits,
are, respectively,

,

and

,

with  denoting the estimated standard deviation of the prediction of a new measurement.

 and  are both denoted as functions of the predictor variable, , here to make it clear

that those terms must be written as functions of the unknown value of the predictor variable. The
left-hand sides of the two equations above are used as arguments in the root-finding software, just

as the expression  is used when computing the estimate of the predictor variable.

Confidence
Intervals for
the Example
Applications

Confidence intervals for the true predictor variable values associated with the observed values of
pressure (178) and voltage (1522) are given in the table below for the Pressure/Temperature
example and the Thermocouple Calibration example, respectively. The approximate confidence
limits and estimated values of the predictor variables were obtained numerically in both cases.

Example

Lower 95%
Confidence

Bound

Estimated
Predictor
Variable

Value

Upper 95%
Confidence

Bound

Pressure/Temperature 178 41.07564 43.31925 45.56146

Thermocouple Calibration 1522 553.0026 553.0187 553.0349

4.5.2.1. Single-Use Calibration Intervals

http://www.itl.nist.gov/div898/handbook/pmd/section5/pmd521.htm (3 of 5) [11/14/2003 5:50:50 PM]



Interpretation
of Calibration
Intervals

Although calibration confidence intervals have some unique features, viewed as confidence
intervals, their interpretation is essentially analogous to that of confidence intervals for the true
average response. Namely, in repeated calibration experiments, when one calibration is made for
each set of data used to fit a calibration function and each single new observation of the response,

then approximately  of the intervals computed as described above will capture
the true value of the predictor variable, which is a measurement on the primary measurement
scale.

The plot below shows 95% confidence intervals computed using 50 independently generated data
sets that follow the same model as the data in the Thermocouple calibration example. Random
errors from a normal distribution with a mean of zero and a known standard deviation are added
to each set of true temperatures and true voltages that follow a model that can be
well-approximated using LOESS to produce the simulated data. Then each data set and a newly
observed voltage measurement are used to compute a confidence interval for the true temperature
that produced the observed voltage. The dashed reference line marks the true temperature under
which the thermocouple measurements were made. It is easy to see that most of the intervals do
contain the true value. In 47 out of 50 data sets, or approximately 95%, the confidence intervals
covered the true temperature. When the number of data sets was increased to 5000, the
confidence intervals computed for 4657, or 93.14%, of the data sets covered the true temperature.
Finally, when the number of data sets was increased to 10000, 93.53% of the confidence intervals
computed covered the true temperature. While these intervals do not exactly attain their stated
coverage, as the confidence intervals for the average response do, the coverage is reasonably
close to the specified level and is probably adequate from a practical point of view.

Confidence
Intervals
Computed
from 50 Sets
of Simulated
Data
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4. Process Modeling
4.5. Use and Interpretation of Process Models

4.5.3.How can I optimize my process using
the process model?

Detailed
Information
on Process
Optimization

Process optimization using models fit to data collected using response
surface designs is primarily covered in Section 5.5.3 of Chapter 5:
Process Improvement. In that section detailed information is given on
how to determine the correct process inputs to hit a target output value
or to maximize or minimize process output. Some background on the
use of process models for optimization can be found in Section 4.1.3.3
of this chapter, however, and information on the basic analysis of data
from optimization experiments is covered along with that of other types
of models in Section 4.1 through Section 4.4 of this chapter.

Contents of
Chapter 5
Section 5.5.3.

Optimizing a Process

Single response case

Path of steepest ascent1.  

Confidence region for search path2.  

Choosing the step length3.  

Optimization when there is adequate quadratic fit4.  

Effect of sampling error on optimal solution5.  

Optimization subject to experimental region
constraints

6.  

1.  

Multiple response case

Path of steepest ascent1.  

Desirability function approach2.  

Mathematical programming approach3.  

2.  

1.  
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4. Process Modeling

4.6.Case Studies in Process Modeling

Detailed,
Realistic
Examples

The general points of the first five sections are illustrated in this section
using data from physical science and engineering applications. Each
example is presented step-by-step in the text and is often cross-linked
with the relevant sections of the chapter describing the analysis in
general. Each analysis can also be repeated using a worksheet linked to
the appropriate Dataplot macros. The worksheet is also linked to the
step-by-step analysis presented in the text for easy reference.

Contents:
Section 6

Load Cell Calibration

Background & Data1.  

Selection of Initial Model2.  

Model Fitting - Initial Model3.  

Graphical Residual Analysis - Initial Model4.  

Interpretation of Numerical Output - Initial Model5.  

Model Refinement6.  

Model Fitting - Model #27.  

Graphical Residual Analysis - Model #28.  

Interpretation of Numerical Output - Model #29.  

Use of the Model for Calibration10.  

Work this Example Yourself11.  

1.  

Alaska Pipeline Ultrasonic Calibration

Background and Data1.  

Check for Batch Effect2.  

Initial Linear Fit3.  

Transformations to Improve Fit and Equalize Variances4.  

Weighting to Improve Fit5.  

Compare the Fits6.  

Work This Example Yourself7.  

2.  
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Ultrasonic Reference Block Study

Background and Data1.  

Initial Non-Linear Fit2.  

Transformations to Improve Fit3.  

Weighting to Improve Fit4.  

Compare the Fits5.  

Work This Example Yourself6.  

3.  

Thermal Expansion of Copper Case Study

Background and Data1.  

Exact Rational Models2.  

Initial Plot of Data3.  

Fit Quadratic/Quadratic Model4.  

Fit Cubic/Cubic Model5.  

Work This Example Yourself6.  

4.  

4.6. Case Studies in Process Modeling
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4. Process Modeling
4.6. Case Studies in Process Modeling

4.6.1.Load Cell Calibration

Quadratic
Calibration

This example illustrates the construction of a linear regression model for
load cell data that relates a known load applied to a load cell to the
deflection of the cell. The model is then used to calibrate future cell
readings associated with loads of unknown magnitude.

Background & Data1.  

Selection of Initial Model2.  

Model Fitting - Initial Model3.  

Graphical Residual Analysis - Initial Model4.  

Interpretation of Numerical Output - Initial Model5.  

Model Refinement6.  

Model Fitting - Model #27.  

Graphical Residual Analysis - Model #28.  

Interpretation of Numerical Output - Model #29.  

Use of the Model for Calibration10.  

Work This Example Yourself11.  

4.6.1. Load Cell Calibration
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.1.Background & Data

Description
of Data
Collection

The data collected in the calibration experiment consisted of a known
load, applied to the load cell, and the corresponding deflection of the
cell from its nominal position. Forty measurements were made over a
range of loads from 150,000 to 3,000,000 units. The data were collected
in two sets in order of increasing load. The systematic run order makes
it difficult to determine whether or not there was any drift in the load
cell or measuring equipment over time. Assuming there is no drift,
however, the experiment should provide a good description of the
relationship between the load applied to the cell and its response.

Resulting
Data  Deflection       Load

-------------------------
 0.11019        150000
 0.21956        300000
 0.32949        450000
 0.43899        600000
 0.54803        750000
 0.65694        900000
 0.76562       1050000
 0.87487       1200000
 0.98292       1350000
 1.09146       1500000
 1.20001       1650000
 1.30822       1800000
 1.41599       1950000
 1.52399       2100000
 1.63194       2250000
 1.73947       2400000
 1.84646       2550000
 1.95392       2700000
 2.06128       2850000
 2.16844       3000000
 0.11052        150000

4.6.1.1. Background & Data
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 0.22018        300000
 0.32939        450000
 0.43886        600000
 0.54798        750000
 0.65739        900000
 0.76596       1050000
 0.87474       1200000
 0.98300       1350000
 1.09150       1500000
 1.20004       1650000
 1.30818       1800000
 1.41613       1950000
 1.52408       2100000
 1.63159       2250000
 1.73965       2400000
 1.84696       2550000
 1.95445       2700000
 2.06177       2850000
 2.16829       3000000

4.6.1.1. Background & Data
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.2.Selection of Initial Model

Start
Simple

The first step in analyzing the data is to select a candidate model. In the case of a measurement
system like this one, a fairly simple function should describe the relationship between the load
and the response of the load cell. One of the hallmarks of an effective measurement system is a
straightforward link between the instrumental response and the property being quantified.

Plot the
Data

Plotting the data indicates that the hypothesized, simple relationship between load and deflection
is reasonable. The plot below shows the data. It indicates that a straight-line model is likely to fit
the data. It does not indicate any other problems, such as presence of outliers or nonconstant
standard deviation of the response.

Initial
Model:
Straight
Line

4.6.1.2. Selection of Initial Model
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4.6.1.2. Selection of Initial Model
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.3.Model Fitting - Initial Model

Least
Squares
Estimation

Using software for computing least squares parameter estimates, the straight-line
model,

is easily fit to the data. The computer output from this process is shown below.
Before trying to interpret all of the numerical output, however, it is critical to check
that the assumptions underlying the parameter estimation are met reasonably well.
The next two sections show how the underlying assumptions about the data and
model are checked using graphical and numerical methods.

Dataplot
Output LEAST SQUARES POLYNOMIAL FIT

SAMPLE SIZE N       =       40
DEGREE              =        1
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.2147264895D-03
REPLICATION DEGREES OF FREEDOM =          20
NUMBER OF DISTINCT SUBSETS     =          20

      PARAMETER ESTIMATES   (APPROX. ST. DEV.)   T VALUE
1 A0     0.614969E-02          (0.7132E-03)        8.6
2 A1     0.722103E-06          (0.3969E-09)      0.18E+04

RESIDUAL    STANDARD DEVIATION =         0.0021712694
RESIDUAL    DEGREES OF FREEDOM =          38
REPLICATION STANDARD DEVIATION =         0.0002147265
REPLICATION DEGREES OF FREEDOM =          20
LACK OF FIT F RATIO = 214.7464 = THE 100.0000% POINT OF
THE F DISTRIBUTION WITH 18 AND  20 DEGREES OF FREEDOM

4.6.1.3. Model Fitting - Initial Model
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4.6.1.3. Model Fitting - Initial Model
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.4.Graphical Residual Analysis - Initial Model

Potentially
Misleading
Plot

After fitting a straight line to the data, many people like to check the quality of the fit with a plot
of the data overlaid with the estimated regression function. The plot below shows this for the load
cell data. Based on this plot, there is no clear evidence of any deficiencies in the model.

Avoiding the
Trap

This type of overlaid plot is useful for showing the relationship between the data and the
predicted values from the regression function; however, it can obscure important detail about the
model. Plots of the residuals, on the other hand, show this detail well, and should be used to
check the quality of the fit. Graphical analysis of the residuals is the single most important
technique for determining the need for model refinement or for verifying that the underlying
assumptions of the analysis are met.

4.6.1.4. Graphical Residual Analysis - Initial Model
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 Residual plots of interest for this model include:

residuals versus the predictor variable1.  

residuals versus the regression function values2.  

residual run order plot3.  

residual lag plot4.  

histogram of the residuals5.  

normal probability plot6.  

 A plot of the residuals versus load is shown below.

Hidden
Structure
Revealed

Scale of Plot
Key

The structure in the relationship between the residuals and the load clearly indicates that the
functional part of the model is misspecified. The ability of the residual plot to clearly show this
problem, while the plot of the data did not show it, is due to the difference in scale between the
plots. The curvature in the response is much smaller than the linear trend. Therefore the curvature
is hidden when the plot is viewed in the scale of the data. When the linear trend is subtracted,
however, as it is in the residual plot, the curvature stands out.

The plot of the residuals versus the predicted deflection values shows essentially the same
structure as the last plot of the residuals versus load. For more complicated models, however, this
plot can reveal problems that are not clear from plots of the residuals versus the predictor
variables.

4.6.1.4. Graphical Residual Analysis - Initial Model
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Similar
Residual
Structure

Additional
Diagnostic
Plots

Further residual diagnostic plots are shown below. The plots include a run order plot, a lag plot, a
histogram, and a normal probability plot. Shown in a two-by-two array like this, these plots
comprise a 4-plot of the data that is very useful for checking the assumptions underlying the
model.

Dataplot
4plot

4.6.1.4. Graphical Residual Analysis - Initial Model
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Interpretation
of Plots

The structure evident in these residual plots also indicates potential problems with different
aspects of the model. Under ideal circumstances, the plots in the top row would not show any
systematic structure in the residuals. The histogram would have a symmetric, bell shape, and the
normal probability plot would be a straight line. Taken at face value, the structure seen here
indicates a time trend in the data, autocorrelation of the measurements, and a non-normal
distribution of the residuals.

 It is likely, however, that these plots will look fine once the function describing the systematic
relationship between load and deflection has been corrected. Problems with one aspect of a
regression model often show up in more than one type of residual plot. Thus there is currently no
clear evidence from the 4-plot that the distribution of the residuals from an appropriate model
would be non-normal, or that there would be autocorrelation in the process, etc. If the 4-plot still
indicates these problems after the functional part of the model has been fixed, however, the
possibility that the problems are real would need to be addressed.

4.6.1.4. Graphical Residual Analysis - Initial Model
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.5. Interpretation of Numerical Output - Initial
Model

Lack-of-Fit
Statistic
Interpretable

The fact that the residual plots clearly indicate a problem with the specification of
the function describing the systematic variation in the data means that there is little
point in looking at most of the numerical results from the fit. However, since there
are replicate measurements in the data, the lack-of-fit test can also be used as part of
the model validation. The numerical results of the fit from Dataplot are list below.

Dataplot
Output LEAST SQUARES POLYNOMIAL FIT

SAMPLE SIZE N       =       40
DEGREE              =        1
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.2147264895D-03
REPLICATION DEGREES OF FREEDOM =          20
NUMBER OF DISTINCT SUBSETS     =          20
  
  
       PARAMETER ESTIMATES (APPROX. ST. DEV.)    T VALUE
1  A0     0.614969E-02        (0.7132E-03)         8.6
2  A1     0.722103E-06        (0.3969E-09)       0.18E+04
  
RESIDUAL    STANDARD DEVIATION =         0.0021712694
RESIDUAL    DEGREES OF FREEDOM =          38
REPLICATION STANDARD DEVIATION =         0.0002147265
REPLICATION DEGREES OF FREEDOM =          20
LACK OF FIT F RATIO = 214.7464 = THE 100.0000% POINT OF
THE F DISTRIBUTION WITH 18 AND 20 DEGREES OF FREEDOM

Function
Incorrect

The lack-of-fit test statistic is 214.7534, which also clearly indicates that the
functional part of the model is not right. The 95% cut-off point for the test is 2.15.
Any value greater than that indicates that the hypothesis of a straight-line model for
this data should be rejected.

4.6.1.5. Interpretation of Numerical Output - Initial Model
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4.6.1.5. Interpretation of Numerical Output - Initial Model
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.6.Model Refinement

After ruling out the straight line model for these data, the next task is to decide what function
would better describe the systematic variation in the data.

Reviewing the plots of the residuals versus all potential predictor variables can offer insight into
selection of a new model, just as a plot of the data can aid in selection of an initial model.
Iterating through a series of models selected in this way will often lead to a function that
describes the data well.

Residual
Structure
Indicates
Quadratic

 The horseshoe-shaped structure in the plot of the residuals versus load suggests that a quadratic
polynomial might fit the data well. Since that is also the simplest polynomial model, after a
straight line, it is the next function to consider.

4.6.1.6. Model Refinement
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4.6.1.6. Model Refinement
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.7.Model Fitting - Model #2

New
Function

Based on the residual plots, the function used to describe the data should be the
quadratic polynomial:

 The computer output from this process is shown below. As for the straight-line
model, however, it is important to check that the assumptions underlying the
parameter estimation are met before trying to interpret the numerical output. The
steps used to complete the graphical residual analysis are essentially identical to
those used for the previous model.

Dataplot
Output
for
Quadratic
Fit

LEAST SQUARES POLYNOMIAL FIT
SAMPLE SIZE N       =       40
DEGREE              =        2
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.2147264895D-03
REPLICATION DEGREES OF FREEDOM =          20
NUMBER OF DISTINCT SUBSETS     =          20

       PARAMETER ESTIMATES  (APPROX. ST. DEV.)  T VALUE
1  A0     0.673618E-03         (0.1079E-03)       6.2
2  A1     0.732059E-06         (0.1578E-09)     0.46E+04
3  A2    -0.316081E-14         (0.4867E-16)       -65.

RESIDUAL    STANDARD DEVIATION =         0.0002051768
RESIDUAL    DEGREES OF FREEDOM =          37
REPLICATION STANDARD DEVIATION =         0.0002147265
REPLICATION DEGREES OF FREEDOM =          20
LACK OF FIT F RATIO = 0.8107 = THE 33.3818% POINT OF
THE F DISTRIBUTION WITH 17 AND 20 DEGREES OF FREEDOM

4.6.1.7. Model Fitting - Model #2
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4.6.1.7. Model Fitting - Model #2
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.8.Graphical Residual Analysis - Model #2

The data with a quadratic estimated regression function and the residual plots are shown below.

Compare
to Initial
Model

 This plot is almost identical to the analogous plot for the straight-line model, again illustrating the
lack of detail in the plot due to the scale. In this case, however, the residual plots will show that
the model does fit well.

4.6.1.8. Graphical Residual Analysis - Model #2
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Plot
Indicates
Model
Fits Well

 The residuals randomly scattered around zero, indicate that the quadratic is a good function to
describe these data. There is also no indication of non-constant variability over the range of loads.

Plot Also
Indicates
Model
OK

4.6.1.8. Graphical Residual Analysis - Model #2
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This plot also looks good. There is no evidence of changes in variability across the range of
deflection.

No
Problems
Indicated

4.6.1.8. Graphical Residual Analysis - Model #2
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 All of these residual plots have become satisfactory by simply by changing the functional form of
the model. There is no evidence in the run order plot of any time dependence in the measurement
process, and the lag plot suggests that the errors are independent. The histogram and normal
probability plot suggest that the random errors affecting the measurement process are normally
distributed.

4.6.1.8. Graphical Residual Analysis - Model #2
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.9. Interpretation of Numerical Output -
Model #2

Quadratic
Confirmed

The numerical results from the fit are shown below. For the quadratic model, the
lack-of-fit test statistic is 0.8107. The fact that the test statistic is approximately one
indicates there is no evidence to support a claim that the functional part of the model
does not fit the data. The test statistic would have had to have been greater than 2.17
to reject the hypothesis that the quadratic model is correct.

Dataplot
Output

 
LEAST SQUARES POLYNOMIAL FIT
SAMPLE SIZE N       =       40
DEGREE              =        2
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.2147264895D-03
REPLICATION DEGREES OF FREEDOM =          20
NUMBER OF DISTINCT SUBSETS     =          20

       PARAMETER ESTIMATES  (APPROX. ST. DEV.)   T VALUE
1  A0     0.673618E-03         (0.1079E-03)        6.2
2  A1     0.732059E-06         (0.1578E-09)      0.46E+04
3  A2    -0.316081E-14         (0.4867E-16)        -65.

RESIDUAL    STANDARD DEVIATION =         0.0002051768
RESIDUAL    DEGREES OF FREEDOM =          37
REPLICATION STANDARD DEVIATION =         0.0002147265
REPLICATION DEGREES OF FREEDOM =          20
LACK OF FIT F RATIO = 0.8107 = THE 33.3818% POINT OF
THE F DISTRIBUTION WITH 17 AND 20 DEGREES OF FREEDOM

Regression
Function

From the numerical output, we can also find the regression function that will be used
for the calibration. The function, with its estimated parameters, is

4.6.1.9. Interpretation of Numerical Output - Model #2
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 All of the parameters are significantly different from zero, as indicated by the
associated t statistics. The 97.5% cut-off for the t distribution with 37 degrees of
freedom is 2.026. Since all of the t values are well above this cut-off, we can safely
conclude that none of the estimated parameters is equal to zero.
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.10.Use of the Model for Calibration

Using the
Model

Now that a good model has been found for these data, it can be used to estimate load values for
new measurements of deflection. For example, suppose a new deflection value of 1.239722 is
observed. The regression function can be solved for load to determine an estimated load value
without having to observe it directly. The plot below illustrates the calibration process
graphically.

Calibration

Finding
Bounds on
the Load

From the plot, it is clear that the load that produced the deflection of 1.239722 should be about
1,750,000, and would certainly lie between 1,500,000 and 2,000,000. This rough estimate of the
possible load range will be used to compute the load estimate numerically.

4.6.1.10. Use of the Model for Calibration
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Obtaining
a
Numerical
Calibration
Value

To solve for the numerical estimate of the load associated with the observed deflection, the
observed value substituting in the regression function and the equation is solved for load.
Typically this will be done using a root finding procedure in a statistical or mathematical
package. That is one reason why rough bounds on the value of the load to be estimated are
needed.

Solving the
Regression
Equation

Which
Solution?

Even though the rough estimate of the load associated with an observed deflection is not
necessary to solve the equation, the other reason is to determine which solution to the equation is
correct, if there are multiple solutions. The quadratic calibration equation, in fact, has two
solutions. As we saw from the plot on the previous page, however, there is really no confusion
over which root of the quadratic function is the correct load. Essentially, the load value must be
between 150,000 and 3,000,000 for this problem. The other root of the regression equation and
the new deflection value correspond to a load of over 229,899,600. Looking at the data at hand, it
is safe to assume that a load of 229,899,600 would yield a deflection much greater than 1.24.

+/- What? The final step in the calibration process, after determining the estimated load associated with the
observed deflection, is to compute an uncertainty or confidence interval for the load. A single-use
95% confidence interval for the load, is obtained by inverting the formulas for the upper and
lower bounds of a 95% prediction interval for a new deflection value. These inequalities, shown
below, are usually solved numerically, just as the calibration equation was, to find the end points
of the confidence interval. For some models, including this one, the solution could actually be
obtained algebraically, but it is easier to let the computer do the work using a generic algorithm.

The three terms on the right-hand side of each inequality are the regression function (  ), a
t-distribution multiplier, and the standard deviation of a new measurement from the process ( ).
Regression software often provides convenient methods for computing these quantities for
arbitrary values of the predictor variables, which can make computation of the confidence interval
end points easier. Although this interval is not symmetric mathematically, the asymmetry is very
small, so for all practical purposes, the interval can be written as

4.6.1.10. Use of the Model for Calibration
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Calibration

4.6.1.11.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot, if you have
downloaded and installed it. Output from each analysis step below will
be displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this
case study yourself. Each step may use results from
previous steps, so please be patient. Wait until the
software verifies that the current step is complete
before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 2 columns of numbers 
    into Dataplot, variables Deflection 
    and Load.

2. Fit and validate initial model.

   1. Plot deflection vs. load.

   2. Fit a straight-line model 
      to the data.

   3. Plot the predicted values 

 1. Based on the plot, a straight-line 
    model should describe the data well.

 2. The straight-line fit was carried 
    out.  Before trying to interpret the
    numerical output, do a graphical 
    residual analysis.

 3. The superposition of the predicted 
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      from the model and the 
      data on the same plot.

   4. Plot the residuals vs.
      load.

   5. Plot the residuals vs. the
      predicted values.

   6. Make a 4-plot of the 
      residuals.

   7. Refer to the numerical output
      from the fit.

    and observed values suggests the 
    model is ok.

 4. The residuals are not random, 
    indicating that a straight line
    is not adequate.

 5. This plot echos the information in 
    the previous plot.

 6. All four plots indicate problems 
    with the model.

 7. The large lack-of-fit F statistic 
    (>214) confirms that the straight-
    line model is inadequate.

3. Fit and validate refined model.

   1. Refer to the plot of the 
      residuals vs. load.

   2. Fit a quadratic model to 
      the data.

   3. Plot the predicted values 
      from the model and the
      data on the same plot.

   4. Plot the residuals vs. load.

   5. Plot the residuals vs. the
      predicted values.

   6. Do a 4-plot of the 
      residuals.

   7. Refer to the numerical 
      output from the fit.

 1. The structure in the plot indicates 
    a quadratic model would better 
    describe the data.

 2. The quadratic fit was carried out.  
    Remember to do the graphical 
    residual analysis before trying to 
    interpret the numerical output.

 3. The superposition of the predicted 
    and observed values again suggests 
    the model is ok.

 4. The residuals appear random, 
    suggesting the quadratic model is ok.

 5. The plot of the residuals vs. the 
    predicted values also suggests the 
    quadratic model is ok.

 6. None of these plots indicates a 
    problem with the model.

 7. The small lack-of-fit F statistic 
    (<1) confirms that the quadratic 
    model fits the data.
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4. Use the model to make a calibrated
   measurement. 

   1. Observe a new deflection 
      value.

   2. Determine the associated 
      load.

   3. Compute the uncertainty of
      the load estimate.

 1. The new deflection is associated with
    an unobserved and unknown load.

 2. Solving the calibration equation 
    yields the load value without having
    to observe it.

 3. Computing a confidence interval for 
    the load value lets us judge the 
    range of plausible load values, 
    since we know measurement noise 
    affects the process.
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4. Process Modeling
4.6. Case Studies in Process Modeling

4.6.2.Alaska Pipeline

Non-Homogeneous
Variances

This example illustrates the construction of a linear regression
model for Alaska pipeline ultrasonic calibration data. This case
study demonstrates the use of transformations and weighted fits to
deal with the violation of the assumption of constant standard
deviations for the random errors. This assumption is also called
homogeneous variances for the errors.

Background and Data1.  

Check for a Batch Effect2.  

Fit Initial Model3.  

Transformations to Improve Fit and Equalize Variances4.  

Weighting to Improve Fit5.  

Compare the Fits6.  

Work This Example Yourself7.  

4.6.2. Alaska Pipeline

http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd62.htm [11/14/2003 5:50:54 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/


4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.1.Background and Data

Description
of Data
Collection

The Alaska pipeline data consists of in-field ultrasonic measurements of
the depths of defects in the Alaska pipeline. The depth of the defects
were then re-measured in the laboratory. These measurements were
performed in six different batches.

The data were analyzed to calibrate the bias of the field measurements
relative to the laboratory measurements. In this analysis, the field
measurement is the response variable and the laboratory measurement is
the predictor variable.

These data were provided by Harry Berger, who was at the time a
scientist for the Office of the Director of the Institute of Materials
Research (now the Materials Science and Engineering Laboratory) of
NIST. These data were used for a study conducted for the Materials
Transportation Bureau of the U.S. Department of Transportation.

Resulting
Data   Field     Lab        

 Defect   Defect       
  Size     Size   Batch
-----------------------
   18      20.2     1
   38      56.0     1
   15      12.5     1
   20      21.2     1
   18      15.5     1
   36      39.0     1
   20      21.0     1
   43      38.2     1
   45      55.6     1
   65      81.9     1
   43      39.5     1
   38      56.4     1
   33      40.5     1
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   10      14.3     1
   50      81.5     1
   10      13.7     1
   50      81.5     1
   15      20.5     1
   53      56.0     1
   60      80.7     2
   18      20.0     2
   38      56.5     2
   15      12.1     2
   20      19.6     2
   18      15.5     2
   36      38.8     2
   20      19.5     2
   43      38.0     2
   45      55.0     2
   65      80.0     2
   43      38.5     2
   38      55.8     2
   33      38.8     2
   10      12.5     2
   50      80.4     2
   10      12.7     2
   50      80.9     2
   15      20.5     2
   53      55.0     2
   15      19.0     3
   37      55.5     3
   15      12.3     3
   18      18.4     3
   11      11.5     3
   35      38.0     3
   20      18.5     3
   40      38.0     3
   50      55.3     3
   36      38.7     3
   50      54.5     3
   38      38.0     3
   10      12.0     3
   75      81.7     3
   10      11.5     3
   85      80.0     3
   13      18.3     3
   50      55.3     3
   58      80.2     3
   58      80.7     3

4.6.2.1. Background and Data
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   48      55.8     4
   12      15.0     4
   63      81.0     4
   10      12.0     4
   63      81.4     4
   13      12.5     4
   28      38.2     4
   35      54.2     4
   63      79.3     4
   13      18.2     4
   45      55.5     4
    9      11.4     4
   20      19.5     4
   18      15.5     4
   35      37.5     4
   20      19.5     4
   38      37.5     4
   50      55.5     4
   70      80.0     4
   40      37.5     4
   21      15.5     5
   19      23.7     5
   10       9.8     5
   33      40.8     5
   16      17.5     5
    5       4.3     5
   32      36.5     5
   23      26.3     5
   30      30.4     5
   45      50.2     5
   33      30.1     5
   25      25.5     5
   12      13.8     5
   53      58.9     5
   36      40.0     5
    5       6.0     5
   63      72.5     5
   43      38.8     5
   25      19.4     5
   73      81.5     5
   45      77.4     5
   52      54.6     6
    9       6.8     6
   30      32.6     6
   22      19.8     6
   56      58.8     6
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   15      12.9     6
   45      49.0     6
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.2.Check for Batch Effect

Plot of Raw
Data

As with any regression problem, it is always a good idea to plot the raw data first. The following
is a scatter plot of the raw data.

This scatter plot shows that a straight line fit is a good initial candidate model for these data.

Plot by Batch These data were collected in six distinct batches. The first step in the analysis is to determine if
there is a batch effect.

In this case, the scientist was not inherently interested in the batch. That is, batch is a nuisance
factor and, if reasonable, we would like to analyze the data as if it came from a single batch.
However, we need to know that this is, in fact, a reasonable assumption to make.

4.6.2.2. Check for Batch Effect

http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd622.htm (1 of 3) [11/14/2003 5:50:54 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/pmd/section6/pipeline/plots/plot1_f.gif


Conditional
Plot

We first generate a conditional plot where we condition on the batch.

This conditional plot shows a scatter plot for each of the six batches on a single page. Each of
these plots shows a similar pattern.

Linear
Correlation
and Related
Plots

We can follow up the conditional plot with a linear correlation plot, a linear intercept plot, a
linear slope plot, and a linear residual standard deviation plot. These four plots show the
correlation, the intercept and slope from a linear fit, and the residual standard deviation for linear
fits applied to each batch. These plots show how a linear fit performs across the six batches.

4.6.2.2. Check for Batch Effect
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The linear correlation plot (upper left), which shows the correlation between field and lab defect
sizes versus the batch, indicates that batch six has a somewhat stronger linear relationship
between the measurements than the other batches do. This is also reflected in the significantly
lower residual standard deviation for batch six shown in the residual standard deviation plot
(lower right), which shows the residual standard deviation versus batch. The slopes all lie within
a range of 0.6 to 0.9 in the linear slope plot (lower left) and the intercepts all lie between 2 and 8
in the linear intercept plot (upper right).

Treat BATCH
as
Homogeneous

These summary plots, in conjunction with the conditional plot above, show that treating the data
as a single batch is a reasonable assumption to make. None of the batches behaves badly
compared to the others and none of the batches requires a significantly different fit from the
others.

These two plots provide a good pair. The plot of the fit statistics allows quick and convenient
comparisons of the overall fits. However, the conditional plot can reveal details that may be
hidden in the summary plots. For example, we can more readily determine the existence of
clusters of points and outliers, curvature in the data, and other similar features.

Based on these plots we will ignore the BATCH variable for the remaining analysis.

4.6.2.2. Check for Batch Effect
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.3. Initial Linear Fit

Linear Fit Output Based on the initial plot of the data, we first fit a straight-line model to the data.

The following fit output was generated by Dataplot (it has been edited slightly for display).

  
 LEAST SQUARES MULTILINEAR FIT
 SAMPLE SIZE N       =      107
 NUMBER OF VARIABLES =        1
 REPLICATION CASE
 REPLICATION STANDARD DEVIATION =     0.6112687111D+01
 REPLICATION DEGREES OF FREEDOM =          29
 NUMBER OF DISTINCT SUBSETS     =          78
  
  
       PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
1  A0                   4.99368       ( 1.126    )          4.4
2  A1       LAB        0.731111       (0.2455E-01)          30.
  
RESIDUAL    STANDARD DEVIATION =         6.0809240341
RESIDUAL    DEGREES OF FREEDOM =         105
REPLICATION STANDARD DEVIATION =         6.1126871109
REPLICATION DEGREES OF FREEDOM =          29
LACK OF FIT F RATIO =       0.9857
  = THE  46.3056% POINT OF THE
F DISTRIBUTION WITH     76 AND     29 DEGREES OF FREEDOM

    

The intercept parameter is estimated to be 4.99 and the slope parameter is estimated to be 0.73.
Both parameters are statistically significant.

6-Plot for Model
Validation

When there is a single independent variable, the 6-plot provides a convenient method for initial
model validation.

4.6.2.3. Initial Linear Fit
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The basic assumptions for regression models are that the errors are random observations from a
normal distribution with mean of zero and constant standard deviation (or variance).

The plots on the first row show that the residuals have increasing variance as the value of the
independent variable (lab) increases in value. This indicates that the assumption of constant
standard deviation, or homogeneity of variances, is violated.

In order to see this more clearly, we will generate full- size plots of the predicted values with the
data and the residuals against the independent variable.

Plot of Predicted
Values with
Original Data

4.6.2.3. Initial Linear Fit
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This plot shows more clearly that the assumption of homogeneous variances for the errors may be
violated.

Plot of Residual
Values Against
Independent
Variable

4.6.2.3. Initial Linear Fit
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This plot also shows more clearly that the assumption of homogeneous variances is violated. This
assumption, along with the assumption of constant location, are typically easiest to see on this
plot.

Non-Homogeneous
Variances

Because the last plot shows that the variances may differ more that slightly, we will address this
issue by transforming the data or using weighted least squares.

4.6.2.3. Initial Linear Fit

http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd623.htm (4 of 4) [11/14/2003 5:50:55 PM]

http://www.itl.nist.gov/div898/handbook/pmd/section6/pipeline/plots/res1_f.gif
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/


4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.4.Transformations to Improve Fit and Equalize
Variances

Transformations In regression modeling, we often apply transformations to achieve the following two goals:

to satisfy the homogeneity of variances assumption for the errors.1.  

to linearize the fit as much as possible.2.  

Some care and judgment is required in that these two goals can conflict. We generally try to
achieve homogeneous variances first and then address the issue of trying to linearize the fit.

Plot of Common
Transformations
to Obtain
Homogeneous
Variances

The first step is to try transforming the response variable to find a tranformation that will equalize
the variances. In practice, the square root, ln, and reciprocal transformations often work well for
this purpose. We will try these first.

In examining these plots, we are looking for the plot that shows the most constant variability
across the horizontal range of the plot.

This plot indicates that the ln transformation is a good candidate model for achieving the most

4.6.2.4. Transformations to Improve Fit and Equalize Variances
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homogeneous variances.

Plot of Common
Transformations
to Linearize the
Fit

One problem with applying the above transformation is that the plot indicates that a straight-line
fit will no longer be an adequate model for the data. We address this problem by attempting to find
a transformation of the predictor variable that will result in the most linear fit. In practice, the
square root, ln, and reciprocal transformations often work well for this purpose. We will try these
first.

This plot shows that the ln transformation of the predictor variable is a good candidate model.

Box-Cox
Linearity Plot

The previous step can be approached more formally by the use of the Box-Cox linearity plot. The
 value on the x axis corresponding to the maximum correlation value on the y axis indicates the

power transformation that yields the most linear fit.

4.6.2.4. Transformations to Improve Fit and Equalize Variances
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This plot indicates that a value of -0.1 achieves the most linear fit.

In practice, for ease of interpretation, we often prefer to use a common transformation, such as the
ln or square root, rather than the value that yields the mathematical maximum. However, the
Box-Cox linearity plot still indicates whether our choice is a reasonable one. That is, we might
sacrifice a small amount of linearity in the fit to have a simpler model.

In this case, a value of 0.0 would indicate a ln transformation. Although the optimal value from
the plot is -0.1, the plot indicates that any value between -0.2 and 0.2 will yield fairly similar
results. For that reason, we choose to stick with the common ln transformation.

ln-ln Fit Based on the above plots, we choose to fit a ln-ln model. Dataplot generated the following output
for this model (it is edited slightly for display).

  
LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N       =      107
NUMBER OF VARIABLES =        1
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.1369758099D+00
REPLICATION DEGREES OF FREEDOM =          29
NUMBER OF DISTINCT SUBSETS     =          78
  
  
       PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
1  A0                  0.281384       (0.8093E-01)          3.5
2  A1       XTEMP      0.885175       (0.2302E-01)          38.

4.6.2.4. Transformations to Improve Fit and Equalize Variances
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RESIDUAL    STANDARD DEVIATION =         0.1682604253
RESIDUAL    DEGREES OF FREEDOM =         105
REPLICATION STANDARD DEVIATION =         0.1369758099
REPLICATION DEGREES OF FREEDOM =          29
LACK OF FIT F RATIO =       1.7032 = THE  94.4923% POINT OF THE
F DISTRIBUTION WITH     76 AND     29 DEGREES OF FREEDOM

    

Note that although the residual standard deviation is significantly lower than it was for the original
fit, we cannot compare them directly since the fits were performed on different scales.

Plot of
Predicted
Values

The plot of the predicted values with the transformed data indicates a good fit. In addition, the
variability of the data across the horizontal range of the plot seems relatively constant.

4.6.2.4. Transformations to Improve Fit and Equalize Variances

http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd624.htm (4 of 6) [11/14/2003 5:50:56 PM]

http://www.itl.nist.gov/div898/handbook/pmd/section6/pipeline/plots/fit2_f.gif


6-Plot of Fit

Since we transformed the data, we need to check that all of the regression assumptions are now
valid.

The 6-plot of the residuals indicates that all of the regression assumptions are now satisfied.

Plot of
Residuals

4.6.2.4. Transformations to Improve Fit and Equalize Variances
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In order to see more detail, we generate a full-size plot of the residuals versus the predictor
variable, as shown above. This plot suggests that the assumption of homogeneous variances is
now met.

4.6.2.4. Transformations to Improve Fit and Equalize Variances
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.5.Weighting to Improve Fit

Weighting Another approach when the assumption of constant standard deviation of the errors (i.e.
homogeneous variances) is violated is to perform a weighted fit. In a weighted fit, we give less
weight to the less precise measurements and more weight to more precise measurements when
estimating the unknown parameters in the model.

Fit for
Estimating
Weights

For the pipeline data, we chose approximate replicate groups so that each group has four
observations (the last group only has three). This was done by first sorting the data by the
predictor variable and then taking four points in succession to form each replicate group.

Using the power function model with the data for estimating the weights, Dataplot generated the
following output for the fit of ln(variances) against ln(means) for the replicate groups. The output
has been edited slightly for display.

LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N       =       27
NUMBER OF VARIABLES =        1
NO REPLICATION CASE

PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
1  A0                  -3.18451       (0.8265    )         -3.9
2  A1       XTEMP       1.69001       (0.2344    )          7.2

RESIDUAL    STANDARD DEVIATION =         0.8561206460
RESIDUAL    DEGREES OF FREEDOM =          25

4.6.2.5. Weighting to Improve Fit
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The fit output and plot from the replicate variances against the replicate means shows that the a
linear fit provides a reasonable fit with an estimated slope of 1.69. Note that this data set has a
small number of replicates, so you may get a slightly different estimate for the slope. For
example, S-PLUS generated a slope estimate of 1.52. This is caused by the sorting of the
predictor variable (i.e., where we have actual replicates in the data, different sorting algorithms
may put some observations in different replicate groups). In practice, any value for the slope,
which will be used as the exponent in the weight function, in the range 1.5 to 2.0 is probably
reasonable and should produce comparable results for the weighted fit.

We used an estimate of 1.5 for the exponent in the weighting function.

Residual
Plot for
Weight
Function

4.6.2.5. Weighting to Improve Fit
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The residual plot from the fit to determine an appropriate weighting function reveals no obvious
problems.

Numerical
Output
from
Weighted
Fit

Dataplot generated the following output for the weighted fit of the model that relates the field
measurements to the lab measurements (edited slightly for display).

LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N       =      107
NUMBER OF VARIABLES =        1
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.6112687111D+01
REPLICATION DEGREES OF FREEDOM =          29
NUMBER OF DISTINCT SUBSETS     =          78

PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
1  A0                   2.35234       (0.5431    )          4.3
2  A1       LAB        0.806363       (0.2265E-01)          36.

RESIDUAL    STANDARD DEVIATION =         0.3645902574
RESIDUAL    DEGREES OF FREEDOM =         105
REPLICATION STANDARD DEVIATION =         6.1126871109
REPLICATION DEGREES OF FREEDOM =          29

4.6.2.5. Weighting to Improve Fit
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This output shows a slope of 0.81 and an intercept term of 2.35. This is compared to a slope of
0.73 and an intercept of 4.99 in the original model.

Plot of
Predicted
Values

The plot of the predicted values with the data indicates a good fit.

Diagnostic
Plots of
Weighted
Residuals

4.6.2.5. Weighting to Improve Fit
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We need to verify that the weighting did not result in the other regression assumptions being
violated. A 6-plot, after weighting the residuals, indicates that the regression assumptions are
satisfied.

Plot of
Weighted
Residuals
vs Lab
Defect
Size

4.6.2.5. Weighting to Improve Fit

http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd625.htm (5 of 6) [11/14/2003 5:50:56 PM]

http://www.itl.nist.gov/div898/handbook/pmd/section6/pipeline/plots/6plot3_f.gif


In order to check the assumption of homogeneous variances for the errors in more detail, we
generate a full sized plot of the weighted residuals versus the predictor variable. This plot
suggests that the errors now have homogeneous variances.

4.6.2.5. Weighting to Improve Fit
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.6.Compare the Fits

Three Fits
to
Compare

It is interesting to compare the results of the three fits:

Unweighted fit1.  

Transformed fit2.  

Weighted fit3.  

Plot of Fits
with Data

This plot shows that, compared to the original fit, the transformed and weighted fits generate
smaller predicted values for low values of lab defect size and larger predicted values for high
values of lab defect size. The three fits match fairly closely for intermediate values of lab defect
size. The transformed and weighted fit tend to agree for the low values of lab defect size.
However, for large values of lab defect size, the weighted fit tends to generate higher values for
the predicted values than does the transformed fit.

4.6.2.6. Compare the Fits
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Conclusion Although the original fit was not bad, it violated the assumption of homogeneous variances for
the error term. Both the fit of the transformed data and the weighted fit successfully address this
problem without violating the other regression assumptions.

4.6.2.6. Compare the Fits
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.7.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot, if you have
downloaded and installed it. Output from each analysis step below will
be displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case
study yourself. Each step may use results from previous steps,
so please be patient. Wait until the software verifies that the
current step is complete before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 3 columns of numbers 
    into Dataplot, variables Field,
    Lab, and Batch.

2. Plot data and check for batch effect.

   1. Plot field versus lab.

   2. Condition plot on batch.

   3. Check batch effect with.
      linear fit plots by batch.

                              

 1. Initial plot indicates that a
    simple linear model is a good 
    initial model.

 2. Condition plot on batch indicates
    no significant batch effect.

 3. Plots of fit by batch indicate no
    significant batch effect.

4.6.2.7. Work This Example Yourself
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3. Fit and validate initial model.

   1. Linear fit of field versus lab.
      Plot predicted values with the
      data.

   2. Generate a 6-plot for model
      validation.

   3. Plot the residuals against
      the predictor variable.

 1. The linear fit was carried out.
    Although the initial fit looks good,
    the plot indicates that the residuals
    do not have homogeneous variances.

 2. The 6-plot does not indicate any 
    other problems with the model,
    beyond the evidence of 
    non-constant error variance.

 3. The detailed residual plot shows
    the inhomogeneity of the error
    variation more clearly.

4. Improve the fit with transformations.

   1. Plot several common transformations
      of the response variable (field)
      versus the predictor variable (lab).

   2. Plot ln(field) versus several 
      common transformations of the 
      predictor variable (lab).
     

   3. Box-Cox linearity plot.

   4. Linear fit of ln(field) versus 
      ln(lab).  Plot predicted values
      with the data.

   5. Generate a 6-plot for model
      validation.

   6. Plot the residuals against
      the predictor variable.

 1. The plots indicate that a ln
    transformation of the dependent
    variable (field) stabilizes
    the variation.

 2. The plots indicate that a ln
    transformation of the predictor
    variable (lab) linearizes the 
    model.

 3. The Box-Cox linearity plot
    indicates an optimum transform
    value of -0.1, although a ln
    transformation should work well.

 4. The plot of the predicted values
    with the data indicates that
    the errors should now have
    homogeneous variances.

 5. The 6-plot shows that the model
    assumptions are satisfied.

 6. The detailed residual plot shows
    more clearly that the assumption
    of homogeneous variances is now 
    satisfied.

4.6.2.7. Work This Example Yourself
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5. Improve the fit using weighting.

   1. Fit function to determine appropriate
      weight function.  Determine value for
      the exponent in the power model.

   2. Examine residuals from weight fit 
      to check adequacy of weight function.

   3. Weighted linear fit of field versus
      lab.  Plot predicted values with
      the data.

   4. Generate a 6-plot after weighting
      the residuals for model validation.

   5. Plot the weighted residuals 
      against the predictor variable.

 1. The fit to determine an appropriate
    weight function indicates that a
    an exponent between 1.5 and 2.0 
    should be reasonable.

 2. The residuals from this fit 
    indicate no major problems.

 3. The weighted fit was carried out.
    The plot of the predicted values
    with the data indicates that the
    fit of the model is improved.

 4. The 6-plot shows that the model
    assumptions are satisfied.

 5. The detailed residual plot shows
    the constant variability of the
    weighted residuals.

6. Compare the fits.

   1. Plot predicted values from each
      of the three models with the 
      data.

 1. The transformed and weighted fits
    generate lower predicted values for
    low values of defect size and larger
    predicted values for high values of
    defect size.

4.6.2.7. Work This Example Yourself
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4. Process Modeling
4.6. Case Studies in Process Modeling

4.6.3.Ultrasonic Reference Block Study

Non-Linear Fit
with
Non-Homogeneous
Variances

This example illustrates the construction of a non-linear
regression model for ultrasonic calibration data. This case study
demonstrates fitting a non-linear model and the use of
transformations and weighted fits to deal with the violation of the
assumption of constant standard deviations for the errors. This
assumption is also called homogeneous variances for the errors.

Background and Data1.  

Fit Initial Model2.  

Transformations to Improve Fit3.  

Weighting to Improve Fit4.  

Compare the Fits5.  

Work This Example Yourself6.  

4.6.3. Ultrasonic Reference Block Study
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.3. Ultrasonic Reference Block Study

4.6.3.1.Background and Data

Description
of the Data

The ultrasonic reference block data consist of a response variable and a
predictor variable. The response variable is ultrasonic response and the
predictor variable is metal distance.

These data were provided by the NIST scientist Dan Chwirut.

Resulting
Data   Ultrasonic      Metal

    Response   Distance
-----------------------
     92.9000     0.5000
     78.7000     0.6250
     64.2000     0.7500
     64.9000     0.8750
     57.1000     1.0000
     43.3000     1.2500
     31.1000     1.7500
     23.6000     2.2500
     31.0500     1.7500
     23.7750     2.2500
     17.7375     2.7500
     13.8000     3.2500
     11.5875     3.7500
      9.4125     4.2500
      7.7250     4.7500
      7.3500     5.2500
      8.0250     5.7500
     90.6000     0.5000
     76.9000     0.6250
     71.6000     0.7500
     63.6000     0.8750
     54.0000     1.0000
     39.2000     1.2500
     29.3000     1.7500

4.6.3.1. Background and Data
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     21.4000     2.2500
     29.1750     1.7500
     22.1250     2.2500
     17.5125     2.7500
     14.2500     3.2500
      9.4500     3.7500
      9.1500     4.2500
      7.9125     4.7500
      8.4750     5.2500
      6.1125     5.7500
     80.0000     0.5000
     79.0000     0.6250
     63.8000     0.7500
     57.2000     0.8750
     53.2000     1.0000
     42.5000     1.2500
     26.8000     1.7500
     20.4000     2.2500
     26.8500     1.7500
     21.0000     2.2500
     16.4625     2.7500
     12.5250     3.2500
     10.5375     3.7500
      8.5875     4.2500
      7.1250     4.7500
      6.1125     5.2500
      5.9625     5.7500
     74.1000     0.5000
     67.3000     0.6250
     60.8000     0.7500
     55.5000     0.8750
     50.3000     1.0000
     41.0000     1.2500
     29.4000     1.7500
     20.4000     2.2500
     29.3625     1.7500
     21.1500     2.2500
     16.7625     2.7500
     13.2000     3.2500
     10.8750     3.7500
      8.1750     4.2500
      7.3500     4.7500
      5.9625     5.2500
      5.6250     5.7500
     81.5000     0.5000
     62.4000     0.7500

4.6.3.1. Background and Data
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     32.5000     1.5000
     12.4100     3.0000
     13.1200     3.0000
     15.5600     3.0000
      5.6300     6.0000
     78.0000     0.5000
     59.9000     0.7500
     33.2000     1.5000
     13.8400     3.0000
     12.7500     3.0000
     14.6200     3.0000
      3.9400     6.0000
     76.8000     0.5000
     61.0000     0.7500
     32.9000     1.5000
     13.8700     3.0000
     11.8100     3.0000
     13.3100     3.0000
      5.4400     6.0000
     78.0000     0.5000
     63.5000     0.7500
     33.8000     1.5000
     12.5600     3.0000
      5.6300     6.0000
     12.7500     3.0000
     13.1200     3.0000
      5.4400     6.0000
     76.8000     0.5000
     60.0000     0.7500
     47.8000     1.0000
     32.0000     1.5000
     22.2000     2.0000
     22.5700     2.0000
     18.8200     2.5000
     13.9500     3.0000
     11.2500     4.0000
      9.0000     5.0000
      6.6700     6.0000
     75.8000     0.5000
     62.0000     0.7500
     48.8000     1.0000
     35.2000     1.5000
     20.0000     2.0000
     20.3200     2.0000
     19.3100     2.5000
     12.7500     3.0000

4.6.3.1. Background and Data
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     10.4200     4.0000
      7.3100     5.0000
      7.4200     6.0000
     70.5000     0.5000
     59.5000     0.7500
     48.5000     1.0000
     35.8000     1.5000
     21.0000     2.0000
     21.6700     2.0000
     21.0000     2.5000
     15.6400     3.0000
      8.1700     4.0000
      8.5500     5.0000
     10.1200     6.0000
     78.0000     0.5000
     66.0000     0.6250
     62.0000     0.7500
     58.0000     0.8750
     47.7000     1.0000
     37.8000     1.2500
     20.2000     2.2500
     21.0700     2.2500
     13.8700     2.7500
      9.6700     3.2500
      7.7600     3.7500
      5.4400     4.2500
      4.8700     4.7500
      4.0100     5.2500
      3.7500     5.7500
     24.1900     3.0000
     25.7600     3.0000
     18.0700     3.0000
     11.8100     3.0000
     12.0700     3.0000
     16.1200     3.0000
     70.8000     0.5000
     54.7000     0.7500
     48.0000     1.0000
     39.8000     1.5000
     29.8000     2.0000
     23.7000     2.5000
     29.6200     2.0000
     23.8100     2.5000
     17.7000     3.0000
     11.5500     4.0000
     12.0700     5.0000

4.6.3.1. Background and Data
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      8.7400     6.0000
     80.7000     0.5000
     61.3000     0.7500
     47.5000     1.0000
     29.0000     1.5000
     24.0000     2.0000
     17.7000     2.5000
     24.5600     2.0000
     18.6700     2.5000
     16.2400     3.0000
      8.7400     4.0000
      7.8700     5.0000
      8.5100     6.0000
     66.7000     0.5000
     59.2000     0.7500
     40.8000     1.0000
     30.7000     1.5000
     25.7000     2.0000
     16.3000     2.5000
     25.9900     2.0000
     16.9500     2.5000
     13.3500     3.0000
      8.6200     4.0000
      7.2000     5.0000
      6.6400     6.0000
     13.6900     3.0000
     81.0000     0.5000
     64.5000     0.7500
     35.5000     1.5000
     13.3100     3.0000
      4.8700     6.0000
     12.9400     3.0000
      5.0600     6.0000
     15.1900     3.0000
     14.6200     3.0000
     15.6400     3.0000
     25.5000     1.7500
     25.9500     1.7500
     81.7000     0.5000
     61.6000     0.7500
     29.8000     1.7500
     29.8100     1.7500
     17.1700     2.7500
     10.3900     3.7500
     28.4000     1.7500
     28.6900     1.7500

4.6.3.1. Background and Data
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     81.3000     0.5000
     60.9000     0.7500
     16.6500     2.7500
     10.0500     3.7500
     28.9000     1.7500
     28.9500     1.7500

4.6.3.1. Background and Data
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.3. Ultrasonic Reference Block Study

4.6.3.2. Initial Non-Linear Fit

Plot of Data The first step in fitting a nonlinear function is to simply plot the data.

This plot shows an exponentially decaying pattern in the data. This suggests that some type of exponential
function might be an appropriate model for the data.

Initial Model
Selection

There are two issues that need to be addressed in the initial model selection when fitting a nonlinear model.

We need to determine an appropriate functional form for the model.1.  

We need to determine appropriate starting values for the estimation of the model parameters.2.  

Determining an
Appropriate
Functional Form
for the Model

Due to the large number of potential functions that can be used for a nonlinear model, the determination of an
appropriate model is not always obvious. Some guidelines for selecting an appropriate model were given in
the analysis chapter.

The plot of the data will often suggest a well-known function. In addition, we often use scientific and
engineering knowledge in determining an appropriate model. In scientific studies, we are frequently interested
in fitting a theoretical model to the data. We also often have historical knowledge from previous studies (either
our own data or from published studies) of functions that have fit similar data well in the past. In the absence
of a theoretical model or experience with prior data sets, selecting an appropriate function will often require a
certain amount of trial and error.

Regardless of whether or not we are using scientific knowledge in selecting the model, model validation is still
critical in determining if our selected model is adequate.

4.6.3.2. Initial Non-Linear Fit
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Determining
Appropriate
Starting Values

Nonlinear models are fit with iterative methods that require starting values. In some cases, inappropriate
starting values can result in parameter estimates for the fit that converge to a local minimum or maximum
rather than the global minimum or maximum. Some models are relatively insensitive to the choice of starting
values while others are extremely sensitive.

If you have prior data sets that fit similar models, these can often be used as a guide for determining good
starting values. We can also sometimes make educated guesses from the functional form of the model. For
some models, there may be specific methods for determining starting values. For example, sinusoidal models
that are commonly used in time series are quite sensitive to good starting values. The beam deflection case
study shows an example of obtaining starting values for a sinusoidal model.

In the case where you do not know what good starting values would be, one approach is to create a grid of
values for each of the parameters of the model and compute some measure of goodness of fit, such as the
residual standard deviation, at each point on the grid. The idea is to create a broad grid that encloses
reasonable values for the parameter. However, we typically want to keep the number of grid points for each
parameter relatively small to keep the computational burden down (particularly as the number of parameters in
the model increases). The idea is to get in the right neighborhood, not to find the optimal fit. We would pick
the grid point that corresponds to the smallest residual standard deviation as the starting values.

Fitting Data to a
Theoretical Model

For this particular data set, the scientist was trying to fit the following theoretical model.

Since we have a theoretical model, we use this as the initial model.

Prefit to Obtain
Starting Values

We used the Dataplot PREFIT command to determine starting values based on a grid of the parameter values.
Here, our grid was 0.1 to 1.0 in increments of 0.1. The output has been edited slightly for display.

  
LEAST SQUARES NON-LINEAR PRE-FIT
SAMPLE SIZE N =      214
MODEL--ULTRASON =(EXP(-B1*METAL)/(B2+B3*METAL))
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.3281762600D+01
REPLICATION DEGREES OF FREEDOM =         192
NUMBER OF DISTINCT SUBSETS     =          22
  
       NUMBER OF LATTICE POINTS    =        1000
  
   STEP                  RESIDUAL  *  PARAMETER
  NUMBER                 STANDARD  *  ESTIMATES
                         DEVIATION *
 ----------------------------------*-----------
     1--               0.35271E+02 * 0.10000E+00 0.10000E+00 0.10000E+00
  
        FINAL PARAMETER ESTIMATES
        1  B1                  0.100000
        2  B2                  0.100000
        3  B3                  0.100000
  
       RESIDUAL    STANDARD DEVIATION =        35.2706031799
       RESIDUAL    DEGREES OF FREEDOM =         211
       REPLICATION STANDARD DEVIATION =         3.2817625999
       REPLICATION DEGREES OF FREEDOM =         192

      

The best starting values based on this grid is to set all three parameters to 0.1.

4.6.3.2. Initial Non-Linear Fit
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Nonlinear Fit
Output

The following fit output was generated by Dataplot (it has been edited for display).

LEAST SQUARES NON-LINEAR FIT
SAMPLE SIZE N =      214
MODEL--ULTRASON =EXP(-B1*METAL)/(B2+B3*METAL)
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.3281762600D+01
REPLICATION DEGREES OF FREEDOM =         192
NUMBER OF DISTINCT SUBSETS     =          22
  
  
         FINAL PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
        1  B1                  0.190404       (0.2206E-01)          8.6
        2  B2                  0.613300E-02   (0.3493E-03)          18.
        3  B3                  0.105266E-01   (0.8027E-03)          13.
  
       RESIDUAL    STANDARD DEVIATION =         3.3616721630
       RESIDUAL    DEGREES OF FREEDOM =         211
       REPLICATION STANDARD DEVIATION =         3.2817625999
       REPLICATION DEGREES OF FREEDOM =         192
       LACK OF FIT F RATIO =       1.5474 = THE  92.6461% POINT OF THE
       F DISTRIBUTION WITH     19 AND    192 DEGREES OF FREEDOM
    

Plot of Predicted
Values with
Original Data

This plot shows a reasonably good fit. It is difficult to detect any violations of the fit assumptions from this
plot. The estimated model is

4.6.3.2. Initial Non-Linear Fit
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6-Plot for Model
Validation

When there is a single independent variable, the 6-plot provides a convenient method for initial model
validation.

The basic assumptions for regression models are that the errors are random observations from a normal
distribution with zero mean and constant standard deviation (or variance).

These plots suggest that the variance of the errors is not constant.

In order to see this more clearly, we will generate full- sized a plot of the predicted values from the model and
overlay the data and plot the residuals against the independent variable, Metal Distance.

Plot of Residual
Values Against
Independent
Variable

4.6.3.2. Initial Non-Linear Fit
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This plot suggests that the errors have greater variance for the values of metal distance less than one than
elsewhere. That is, the assumption of homogeneous variances seems to be violated.

Non-Homogeneous
Variances

Except when the Metal Distance is less than or equal to one, there is not strong evidence that the error
variances differ. Nevertheless, we will use transformations or weighted fits to see if we can elminate this
problem.

4.6.3.2. Initial Non-Linear Fit
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.3. Ultrasonic Reference Block Study

4.6.3.3.Transformations to Improve Fit

Transformations One approach to the problem of non-homogeneous variances is to apply transformations to the data.

Plot of Common
Transformations
to Obtain
Homogeneous
Variances

The first step is to try transformations of the response variable that will result in homogeneous variances. In
practice, the square root, ln, and reciprocal transformations often work well for this purpose. We will try these
first.

In examining these four plots, we are looking for the plot that shows the most constant variability of the
ultrasonic response across values of metal distance. Although the scales of these plots differ widely, which
would seem to make comparisons difficult, we are not comparing the absolute levesl of variability between
plots here. Instead we are comparing only how constant the variation within each plot is for these four plots.
The plot with the most constant variation will indicate which transformation is best.

Based on constancy of the variation in the residuals, the square root transformation is probably the best
tranformation to use for this data.

4.6.3.3. Transformations to Improve Fit
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Plot of Common
Transformations
to Predictor
Variable

After transforming the response variable, it is often helpful to transform the predictor variable as well. In
practice, the square root, ln, and reciprocal transformations often work well for this purpose. We will try these
first.

This plot shows that none of the proposed transformations offers an improvement over using the raw predictor
variable.

Square Root Fit Based on the above plots, we choose to fit a model with a square root transformation for the response variable
and no transformation for the predictor variable. Dataplot generated the following output for this model (it is
edited slightly for display).

  
LEAST SQUARES NON-LINEAR FIT
SAMPLE SIZE N =      214
MODEL--YTEMP =EXP(-B1*XTEMP)/(B2+B3*XTEMP)
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.2927381992D+00
REPLICATION DEGREES OF FREEDOM =         192
NUMBER OF DISTINCT SUBSETS     =          22
  
         FINAL PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
        1  B1                 -0.154326E-01   (0.8593E-02)         -1.8
        2  B2                  0.806714E-01   (0.1524E-02)          53.
        3  B3                  0.638590E-01   (0.2900E-02)          22.
  
RESIDUAL    STANDARD DEVIATION =         0.2971503735
RESIDUAL    DEGREES OF FREEDOM =         211
REPLICATION STANDARD DEVIATION =         0.2927381992
REPLICATION DEGREES OF FREEDOM =         192
LACK OF FIT F RATIO =       1.3373 = THE  83.6085% POINT OF THE
F DISTRIBUTION WITH     19 AND    192 DEGREES OF FREEDOM

4.6.3.3. Transformations to Improve Fit
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Although the residual standard deviation is lower than it was for the original fit, we cannot compare them
directly since the fits were performed on different scales.

Plot of
Predicted
Values

The plot of the predicted values with the transformed data indicates a good fit. The fitted model is

6-Plot of Fit

4.6.3.3. Transformations to Improve Fit
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Since we transformed the data, we need to check that all of the regression assumptions are now valid.

The 6-plot of the data using this model indicates no obvious violations of the assumptions.

Plot of
Residuals

In order to see more detail, we generate a full size version of the residuals versus predictor variable plot. This
plot suggests that the errors now satisfy the assumption of homogeneous variances.

4.6.3.3. Transformations to Improve Fit
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4.6.3.3. Transformations to Improve Fit
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.3. Ultrasonic Reference Block Study

4.6.3.4.Weighting to Improve Fit

Weighting Another approach when the assumption of constant variance of the errors is violated is to perform
a weighted fit. In a weighted fit, we give less weight to the less precise measurements and more
weight to more precise measurements when estimating the unknown parameters in the model.

Finding An
Appropriate
Weight
Function

Techniques for determining an appropriate weight function were discussed in detail in Section
4.4.5.2.

In this case, we have replication in the data, so we can fit the power model

to the variances from each set of replicates in the data and use  for the weights.

Fit for
Estimating
Weights

Dataplot generated the following output for the fit of ln(variances) against ln(means) for the
replicate groups. The output has been edited slightly for display.

LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N       =       22
NUMBER OF VARIABLES =        1

PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
1  A0                   2.46872       (0.2186    )          11.
2  A1       XTEMP      -1.02871       (0.1983    )         -5.2

RESIDUAL    STANDARD DEVIATION =         0.6945897937
RESIDUAL    DEGREES OF FREEDOM =          20

4.6.3.4. Weighting to Improve Fit
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The fit output and plot from the replicate variances against the replicate means shows that the
linear fit provides a reasonable fit, with an estimated slope of -1.03.

Based on this fit, we used an estimate of -1.0 for the exponent in the weighting function.

Residual
Plot for
Weight
Function

4.6.3.4. Weighting to Improve Fit
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The residual plot from the fit to determine an appropriate weighting function reveals no obvious
problems.

Numerical
Output
from
Weighted
Fit

Dataplot generated the following output for the weighted fit (edited slightly for display).

LEAST SQUARES NON-LINEAR FIT
SAMPLE SIZE N =      214
MODEL--ULTRASON =EXP(-B1*METAL)/(B2+B3*METAL)
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.3281762600D+01
REPLICATION DEGREES OF FREEDOM =         192
NUMBER OF DISTINCT SUBSETS     =          22

FINAL PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
1  B1                  0.147046       (0.1512E-01)          9.7
2  B2                  0.528104E-02   (0.4063E-03)          13.
3  B3                  0.123853E-01   (0.7458E-03)          17.

RESIDUAL    STANDARD DEVIATION =         4.1106567383
RESIDUAL    DEGREES OF FREEDOM =         211
REPLICATION STANDARD DEVIATION =         3.2817625999
REPLICATION DEGREES OF FREEDOM =         192
LACK OF FIT F RATIO =       7.3183 = THE 100.0000% POINT OF THE

4.6.3.4. Weighting to Improve Fit
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F DISTRIBUTION WITH     19 AND    192 DEGREES OF FREEDOM

Plot of
Predicted
Values

To assess the quality of the weighted fit, we first generate a plot of the predicted line with the
original data.

The plot of the predicted values with the data indicates a good fit. The model for the weighted fit
is

6-Plot of
Fit

4.6.3.4. Weighting to Improve Fit
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We need to verify that the weighted fit does not violate the regression assumptions. The 6-plot
indicates that the regression assumptions are satisfied.

Plot of
Residuals

4.6.3.4. Weighting to Improve Fit
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In order to check the assumption of equal error variances in more detail, we generate a full-sized
version of the residuals versus the predictor variable. This plot suggests that the residuals now
have approximately equal variability.

4.6.3.4. Weighting to Improve Fit
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.3. Ultrasonic Reference Block Study

4.6.3.5.Compare the Fits

Three Fits
to
Compare

It is interesting to compare the results of the three fits:

Unweighted fit1.  

Transformed fit2.  

Weighted fit3.  

Plot of Fits
with Data

The first step in comparing the fits is to plot all three sets of predicted values (in the original
units) on the same plot with the raw data.

This plot shows that all three fits generate comparable predicted values. We can also compare the
residual standard deviations (RESSD) from the fits. The RESSD for the transformed data is
calculated after translating the predicted values back to the original scale.

4.6.3.5. Compare the Fits
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RESSD From Unweighted Fit  = 3.361673
RESSD From Transformed Fit = 3.306732
RESSD From Weighted Fit    = 3.392797

    

In this case, the RESSD is quite close for all three fits (which is to be expected based on the plot).

Conclusion Given that transformed and weighted fits generate predicted values that are quite close to the
original fit, why would we want to make the extra effort to generate a transformed or weighted
fit? We do so to develop a model that satisfies the model assumptions for fitting a nonlinear
model. This gives us more confidence that conclusions and analyses based on the model are
justified and appropriate.

4.6.3.5. Compare the Fits
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.3. Ultrasonic Reference Block Study

4.6.3.6.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot, if you have
downloaded and installed it. Output from each analysis step below will
be displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be
patient. Wait until the software verifies that the current step is
complete before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 2 columns of numbers 
    into Dataplot, variables the
    ultrasonic response and metal
    distance

2. Plot data, pre-fit for starting values, and
   fit nonlinear model.

   1. Plot the ultrasonic response versus
      metal distance.

   2. Run PREFIT to generate good
      starting values.

   3. Nonlinear fit of the ultrasonic response

                              

 1. Initial plot indicates that a
    nonlinear model is required.
    Theory dictates an exponential
    over linear for the initial model.

 2. Pre-fit indicated starting
    values of 0.1 for all 3
    parameters.

 3. The nonlinear fit was carried out.

4.6.3.6. Work This Example Yourself
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      versus metal distance.  Plot predicted
      values and overlay the data.

   4. Generate a 6-plot for model
      validation.

   5. Plot the residuals against
      the predictor variable.

    Initial fit looks pretty good.

 4. The 6-plot shows that the model
    assumptions are satisfied except for
    the non-homogeneous variances.

 5. The detailed residual plot shows
    the non-homogeneous variances
    more clearly.

3. Improve the fit with transformations.

   1. Plot several common transformations
      of the dependent variable (ultrasonic
      response).

   2. Plot several common transformations
      of the predictor variable (metal).

   3. Nonlinear fit of transformed data.
      Plot predicted values with the
      data.

   4. Generate a 6-plot for model
      validation.

   5. Plot the residuals against
      the predictor variable.

 1. The plots indicate that a square
    root transformation on the dependent
    variable (ultrasonic response) is a
    good candidate model.

 2. The plots indicate that no
    transformation on the predictor
    variable (metal distance) is
    a good candidate model.

 3. Carry out the fit on the transformed
    data.  The plot of the predicted
    values overlaid with the data 
    indicates a good fit.

 4. The 6-plot suggests that the model
    assumptions, specifically homogeneous
    variances for the errors, are
    satisfied.

 5. The detailed residual plot shows
    more clearly that the homogeneous
    variances assumption is now
    satisfied.

4. Improve the fit using weighting.

   1. Fit function to determine appropriate
      weight function.  Determine value for
      the exponent in the power model.

   2. Plot residuals from fit to determine
      appropriate weight function.

 1. The fit to determine an appropriate
    weight function indicates that a
    value for the exponent in the range
    -1.0 to -1.1 should be reasonable.

 2. The residuals from this fit 
    indicate no major problems.

4.6.3.6. Work This Example Yourself
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   3. Weighted linear fit of field versus
      lab.  Plot predicted values with
      the data.

   4. Generate a 6-plot for model
      validation.

   5. Plot the residuals against
      the predictor variable.

 3. The weighted fit was carried out.
    The plot of the predicted values
    overlaid with the data suggests
    that the variances arehomogeneous.

 4. The 6-plot shows that the model
    assumptions are satisfied.

 5. The detailed residual plot suggests
    the homogeneous variances for the
    errors more clearly.

5. Compare the fits.

   1. Plot predicted values from each
      of the three models with the 
      data.

 1. The transformed and weighted fits
    generate only slightly different
    predicted values, but the model
    assumptions are not violated.

4.6.3.6. Work This Example Yourself
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4. Process Modeling
4.6. Case Studies in Process Modeling

4.6.4.Thermal Expansion of Copper Case
Study

Rational
Function
Models

This case study illustrates the use of a class of nonlinear models called
rational function models. The data set used is the thermal expansion of
copper related to temperature.

This data set was provided by the NIST scientist Thomas Hahn.

Contents Background and Data1.  

Rational Function Models2.  

Initial Plot of Data3.  

Fit Quadratic/Quadratic Model4.  

Fit Cubic/Cubic Model5.  

Work This Example Yourself6.  

4.6.4. Thermal Expansion of Copper Case Study
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.4. Thermal Expansion of Copper Case Study

4.6.4.1.Background and Data

Description
of the Data

The response variable for this data set is the coefficient of thermal
expansion for copper. The predictor variable is temperature in degrees
kelvin. There were 236 data points collected.

These data were provided by the NIST scientist Thomas Hahn.

Resulting
Data  Coefficient               

  of Thermal    Temperature
   Expansion       (Degrees
   of Copper        Kelvin)
---------------------------
       0.591         24.41
       1.547         34.82
       2.902         44.09
       2.894         45.07
       4.703         54.98
       6.307         65.51
       7.030         70.53
       7.898         75.70
       9.470         89.57
       9.484         91.14
      10.072         96.40
      10.163         97.19
      11.615        114.26
      12.005        120.25
      12.478        127.08
      12.982        133.55
      12.970        133.61
      13.926        158.67
      14.452        172.74
      14.404        171.31
      15.190        202.14
      15.550        220.55

4.6.4.1. Background and Data

http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd641.htm (1 of 6) [11/14/2003 5:51:06 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


      15.528        221.05
      15.499        221.39
      16.131        250.99
      16.438        268.99
      16.387        271.80
      16.549        271.97
      16.872        321.31
      16.830        321.69
      16.926        330.14
      16.907        333.03
      16.966        333.47
      17.060        340.77
      17.122        345.65
      17.311        373.11
      17.355        373.79
      17.668        411.82
      17.767        419.51
      17.803        421.59
      17.765        422.02
      17.768        422.47
      17.736        422.61
      17.858        441.75
      17.877        447.41
      17.912        448.70
      18.046        472.89
      18.085        476.69
      18.291        522.47
      18.357        522.62
      18.426        524.43
      18.584        546.75
      18.610        549.53
      18.870        575.29
      18.795        576.00
      19.111        625.55
       0.367         20.15
       0.796         28.78
       0.892         29.57
       1.903         37.41
       2.150         39.12
       3.697         50.24
       5.870         61.38
       6.421         66.25
       7.422         73.42
       9.944         95.52
      11.023        107.32
      11.870        122.04

4.6.4.1. Background and Data
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      12.786        134.03
      14.067        163.19
      13.974        163.48
      14.462        175.70
      14.464        179.86
      15.381        211.27
      15.483        217.78
      15.590        219.14
      16.075        262.52
      16.347        268.01
      16.181        268.62
      16.915        336.25
      17.003        337.23
      16.978        339.33
      17.756        427.38
      17.808        428.58
      17.868        432.68
      18.481        528.99
      18.486        531.08
      19.090        628.34
      16.062        253.24
      16.337        273.13
      16.345        273.66
      16.388        282.10
      17.159        346.62
      17.116        347.19
      17.164        348.78
      17.123        351.18
      17.979        450.10
      17.974        450.35
      18.007        451.92
      17.993        455.56
      18.523        552.22
      18.669        553.56
      18.617        555.74
      19.371        652.59
      19.330        656.20
       0.080         14.13
       0.248         20.41
       1.089         31.30
       1.418         33.84
       2.278         39.70
       3.624         48.83
       4.574         54.50
       5.556         60.41
       7.267         72.77

4.6.4.1. Background and Data
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       7.695         75.25
       9.136         86.84
       9.959         94.88
       9.957         96.40
      11.600        117.37
      13.138        139.08
      13.564        147.73
      13.871        158.63
      13.994        161.84
      14.947        192.11
      15.473        206.76
      15.379        209.07
      15.455        213.32
      15.908        226.44
      16.114        237.12
      17.071        330.90
      17.135        358.72
      17.282        370.77
      17.368        372.72
      17.483        396.24
      17.764        416.59
      18.185        484.02
      18.271        495.47
      18.236        514.78
      18.237        515.65
      18.523        519.47
      18.627        544.47
      18.665        560.11
      19.086        620.77
       0.214         18.97
       0.943         28.93
       1.429         33.91
       2.241         40.03
       2.951         44.66
       3.782         49.87
       4.757         55.16
       5.602         60.90
       7.169         72.08
       8.920         85.15
      10.055         97.06
      12.035        119.63
      12.861        133.27
      13.436        143.84
      14.167        161.91
      14.755        180.67
      15.168        198.44

4.6.4.1. Background and Data
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      15.651        226.86
      15.746        229.65
      16.216        258.27
      16.445        273.77
      16.965        339.15
      17.121        350.13
      17.206        362.75
      17.250        371.03
      17.339        393.32
      17.793        448.53
      18.123        473.78
      18.49         511.12
      18.566        524.70
      18.645        548.75
      18.706        551.64
      18.924        574.02
      19.100        623.86
       0.375         21.46
       0.471         24.33
       1.504         33.43
       2.204         39.22
       2.813         44.18
       4.765         55.02
       9.835         94.33
      10.040         96.44
      11.946        118.82
      12.596        128.48
      13.303        141.94
      13.922        156.92
      14.440        171.65
      14.951        190.00
      15.627        223.26
      15.639        223.88
      15.814        231.50
      16.315        265.05
      16.334        269.44
      16.430        271.78
      16.423        273.46
      17.024        334.61
      17.009        339.79
      17.165        349.52
      17.134        358.18
      17.349        377.98
      17.576        394.77
      17.848        429.66
      18.090        468.22

4.6.4.1. Background and Data
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      18.276        487.27
      18.404        519.54
      18.519        523.03
      19.133        612.99
      19.074        638.59
      19.239        641.36
      19.280        622.05
      19.101        631.50
      19.398        663.97
      19.252        646.90
      19.890        748.29
      20.007        749.21
      19.929        750.14
      19.268        647.04
      19.324        646.89
      20.049        746.90
      20.107        748.43
      20.062        747.35
      20.065        749.27
      19.286        647.61
      19.972        747.78
      20.088        750.51
      20.743        851.37
      20.830        845.97
      20.935        847.54
      21.035        849.93
      20.930        851.61
      21.074        849.75
      21.085        850.98
      20.935        848.23
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.4. Thermal Expansion of Copper Case Study

4.6.4.2.Rational Function Models

Before proceeding with the case study, some explanation of rational
function models is required.

Polynomial
Functions

A polynomial function is one that has the form

with n denoting a non-negative integer that defines the degree of the
polynomial. A polynomial with a degree of 0 is simply a constant, with a
degree of 1 is a line, with a degree of 2 is a quadratic, with a degree of 3 is a
cubic, and so on.

Rational
Functions

A rational function is simply the ratio of two polynomial functions.

with n denoting a non-negative integer that defines the degree of the
numerator and m is a non-negative integer that defines the degree of the
denominator. For fitting rational function models, the constant term in the
denominator is usually set to 1.

Rational functions are typically identified by the degrees of the numerator
and denominator. For example, a quadratic for the numerator and a cubic for
the denominator is identified as a quadratic/cubic rational function. The
graphs of some common rational functions are shown in an appendix.

4.6.4.2. Rational Function Models
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Polynomial
Models

Historically, polynomial models are among the most frequently used
empirical models for fitting functions. These models are popular for the
following reasons.

Polynomial models have a simple form.1.  

Polynomial models have well known and understood properties.2.  

Polynomial models have moderate flexibility of shapes.3.  

Polynomial models are a closed family. Changes of location and scale
in the raw data result in a polynomial model being mapped to a
polynomial model. That is, polynomial models are not dependent on
the underlying metric.

4.  

Polynomial models are computationally easy to use.5.  

However, polynomial models also have the following limitations.

Polynomial models have poor interpolatory properties. High-degree
polynomials are notorious for oscillations between exact-fit values.

1.  

Polynomial models have poor extrapolatory properties. Polynomials
may provide good fits within the range of data, but they will
frequently deteriorate rapidly outside the range of the data.

2.  

Polynomial models have poor asymptotic properties. By their nature,
polynomials have a finite response for finite  values and have an
infinite response if and only if the  value is infinite. Thus
polynomials may not model asympototic phenomena very well.

3.  

Polynomial models have a shape/degree tradeoff. In order to model
data with a complicated structure, the degree of the model must be
high, indicating and the associated number of parameters to be
estimated will also be high. This can result in highly unstable models.

4.  

Rational
Function
Models

A rational function model is a generalization of the polynomial model.
Rational function models contain polynomial models as a subset (i.e., the
case when the denominator is a constant).

If modeling via polynomial models is inadequate due to any of the
limitations above, you should consider a rational function model.

4.6.4.2. Rational Function Models
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Advantages Rational function models have the following advantages.

Rational function models have a moderately simple form.1.  

Rational function models are a closed family. As with polynomial
models, this means that rational function models are not dependent on
the underlying metric.

2.  

Rational function models can take on an extremely wide range of
shapes, accommodating a much wider range of shapes than does the
polynomial family.

3.  

Rational function models have better interpolatory properties than
polynomial models. Rational functions are typically smoother and less
oscillatory than polynomial models.

4.  

Rational functions have excellent extrapolatory powers. Rational
functions can typically be tailored to model the function not only
within the domain of the data, but also so as to be in agreement with
theoretical/asymptotic behavior outside the domain of interest.

5.  

Rational function models have excellent asymptotic properties.
Rational functions can be either finite or infinite for finite values, or
finite or infinite for infinite  values. Thus, rational functions can
easily be incorporated into a rational function model.

6.  

Rational function models can often be used to model complicated
structure with a fairly low degree in both the numerator and
denominator. This in turn means that fewer coefficients will be
required compared to the polynomial model.

7.  

Rational function models are moderately easy to handle
computationally. Although they are nonlinear models, rational
function models are a particularly easy nonlinear models to fit.

8.  

Disadvantages Rational function models have the following disadvantages.

The properties of the rational function family are not as well known to
engineers and scientists as are those of the polynomial family. The
literature on the rational function family is also more limited. Because
the properties of the family are often not well understood, it can be
difficult to answer the following modeling question:

Given that data has a certain shape, what values should be
chosen for the degree of the numerator and the degree on the
denominator?

1.  

Unconstrained rational function fitting can, at times, result in
undesired nusiance asymptotes (vertically) due to roots in the
denominator polynomial. The range of  values affected by the
function "blowing up" may be quite narrow, but such asymptotes,
when they occur, are a nuisance for local interpolation in the

2.  

4.6.4.2. Rational Function Models
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neighborhood of the asymptote point. These asymptotes are easy to
detect by a simple plot of the fitted function over the range of the
data. Such asymptotes should not discourage you from considering
rational function models as a choice for empirical modeling. These
nuisance asymptotes occur occasionally and unpredictably, but the
gain in flexibility of shapes is well worth the chance that they may
occur.

Starting
Values for
Rational
Function
Models

One common difficulty in fitting nonlinear models is finding adequate
starting values. A major advantage of rational function models is the ability
to compute starting values using a linear least squares fit.

To do this, choose p points from the data set, with p denoting the number of
parameters in the rational model. For example, given the linear/quadratic
model

we need to select four representative points.

We then perform a linear fit on the model

Here, pn and pd are the degrees of the numerator and denominator,
respectively, and the  and  contain the subset of points, not the full data
set. The estimated coefficients from this linear fit are used as the starting
values for fitting the nonlinear model to the full data set.

Note:This type of fit, with the response variable appearing on both sides of
the function, should only be used to obtain starting values for the nonlinear
fit. The statistical properties of fits like this are not well understood.

The subset of points should be selected over the range of the data. It is not
critical which points are selected, although you should avoid points that are
obvious outliers.

4.6.4.2. Rational Function Models
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.4. Thermal Expansion of Copper Case Study

4.6.4.3. Initial Plot of Data

Plot
of
Data

The first step in fitting a nonlinear function is to simply plot the data.

This plot initially shows a fairly steep slope that levels off to a more gradual slope. This type of
curve can often be modeled with a rational function model.

The plot also indicates that there do not appear to be any outliers in this data.

4.6.4.3. Initial Plot of Data
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.4. Thermal Expansion of Copper Case Study

4.6.4.4.Quadratic/Quadratic Rational Function Model

Q/Q
Rational
Function
Model

We used Dataplot to fit the Q/Q rational function model. Dataplot first uses the EXACT RATIONAL FIT command to
generate the starting values and then the FIT command to generate the nonlinear fit.

We used the following 5 points to generate the starting values.

 TEMP        THERMEXP
 ----        --------
  10             0
  50             5
 120            12
 200            15
 800            20
     

Exact
Rational
Fit Output

Dataplot generated the following output from the EXACT RATIONAL FIT command. The output has been edited for
display.

EXACT RATIONAL FUNCTION FIT
NUMBER OF POINTS IN FIRST SET    =        5
DEGREE OF NUMERATOR              =        2
DEGREE OF DENOMINATOR            =        2
  
NUMERATOR  --A0  A1  A2          =      -0.301E+01       0.369E+00      -0.683E-02
DENOMINATOR--B0  B1  B2          =       0.100E+01      -0.112E-01      -0.306E-03
 
APPLICATION OF EXACT-FIT COEFFICIENTS
TO SECOND PAIR OF VARIABLES--
  
NUMBER OF POINTS IN SECOND SET           =      236
NUMBER OF ESTIMATED COEFFICIENTS         =        5
RESIDUAL DEGREES OF FREEDOM              =      231

RESIDUAL STANDARD DEVIATION (DENOM=N-P)  =  0.17248161E+01
AVERAGE ABSOLUTE RESIDUAL   (DENOM=N)    =  0.82943726E+00
LARGEST (IN MAGNITUDE) POSITIVE RESIDUAL =  0.27050836E+01
LARGEST (IN MAGNITUDE) NEGATIVE RESIDUAL = -0.11428773E+02
LARGEST (IN MAGNITUDE) ABSOLUTE RESIDUAL =  0.11428773E+02
  
     

The important information in this output are the estimates for A0, A1, A2, B1, and B2 (B0 is always set to 1). These
values are used as the starting values for the fit in the next section.

4.6.4.4. Quadratic/Quadratic Rational Function Model
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Nonlinear
Fit Output

Dataplot generated the following output for the nonlinear fit. The output has been edited for display.

LEAST SQUARES NON-LINEAR FIT
SAMPLE SIZE N =      236
MODEL--THERMEXP =(A0+A1*TEMP+A2*TEMP**2)/(1+B1*TEMP+B2*TEMP**2)
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.8131711930D-01
REPLICATION DEGREES OF FREEDOM =           1
NUMBER OF DISTINCT SUBSETS     =         235
  
FINAL PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
1  A0                  -8.12326       (0.3908    )         -21.
2  A1                  0.513233       (0.5418E-01)          9.5
3  A2                 -0.736978E-02   (0.1705E-02)         -4.3
4  B1                 -0.689864E-02   (0.3960E-02)         -1.7
5  B2                 -0.332089E-03   (0.7890E-04)         -4.2

RESIDUAL    STANDARD DEVIATION =         0.5501883030
RESIDUAL    DEGREES OF FREEDOM =         231
REPLICATION STANDARD DEVIATION =         0.0813171193
REPLICATION DEGREES OF FREEDOM =           1
LACK OF FIT F RATIO =      45.9729 = THE  88.2878% POINT OF THE
F DISTRIBUTION WITH    230 AND      1 DEGREES OF FREEDOM

     

The above output yields the following estimated model.

Plot of
Q/Q
Rational
Function
Fit

We generate a plot of the fitted rational function model with the raw data.

Looking at the fitted function with the raw data appears to show a reasonable fit.

4.6.4.4. Quadratic/Quadratic Rational Function Model

http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd644.htm (2 of 4) [11/14/2003 5:51:07 PM]

http://www.itl.nist.gov/div898/handbook/pmd/section6/copper/plots/qqfit_f.gif


6-Plot for
Model
Validation

Although the plot of the fitted function with the raw data appears to show a reasonable fit, we need to validate the model
assumptions. The 6-plot is an effective tool for this purpose.

The plot of the residuals versus the predictor variable temperature (row 1, column 2) and of the residuals versus the
predicted values (row 1, column 3) indicate a distinct pattern in the residuals. This suggests that the assumption of random
errors is badly violated.

Residual
Plot

We generate a full-sized residual plot in order to show more detail.

4.6.4.4. Quadratic/Quadratic Rational Function Model
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The full-sized residual plot clearly shows the distinct pattern in the residuals. When residuals exhibit a clear pattern, the
corresponding errors are probably not random.

4.6.4.4. Quadratic/Quadratic Rational Function Model
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.4. Thermal Expansion of Copper Case Study

4.6.4.5.Cubic/Cubic Rational Function Model

C/C
Rational
Function
Model

Since the Q/Q model did not describe the data well, we next fit a cubic/cubic (C/C) rational
function model.

We used Dataplot to fit the C/C rational function model with the following 7 subset points to
generate the starting values.

 TEMP        THERMEXP
 ----        --------
  10             0
  30             2
  40             3
  50             5
 120            12
 200            15
 800            20
     

Exact
Rational
Fit Output

Dataplot generated the following output from the exact rational fit command. The output has been
edited for display.

EXACT RATIONAL FUNCTION FIT
NUMBER OF POINTS IN FIRST SET    =        7
DEGREE OF NUMERATOR              =        3
DEGREE OF DENOMINATOR            =        3
  
NUMERATOR  --A0  A1  A2  A3      =
   -0.2322993E+01  0.3528976E+00 -0.1382551E-01  0.1765684E-03
DENOMINATOR--B0  B1  B2  B3      = 
    0.1000000E+01 -0.3394208E-01  0.1099545E-03  0.7905308E-05
  
APPLICATION OF EXACT-FIT COEFFICIENTS
TO SECOND PAIR OF VARIABLES--
  
NUMBER OF POINTS IN SECOND SET           =      236
NUMBER OF ESTIMATED COEFFICIENTS         =        7
RESIDUAL DEGREES OF FREEDOM              =      229
  
RESIDUAL SUM OF SQUARES                  =  0.78246452E+02
RESIDUAL STANDARD DEVIATION (DENOM=N-P)  =  0.58454049E+00
AVERAGE ABSOLUTE RESIDUAL   (DENOM=N)    =  0.46998626E+00

4.6.4.5. Cubic/Cubic Rational Function Model
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LARGEST (IN MAGNITUDE) POSITIVE RESIDUAL =  0.95733070E+00
LARGEST (IN MAGNITUDE) NEGATIVE RESIDUAL = -0.13497944E+01
LARGEST (IN MAGNITUDE) ABSOLUTE RESIDUAL =  0.13497944E+01
  
  
     

The important information in this output are the estimates for A0, A1, A2, A3, B1, B2, and B3
(B0 is always set to 1). These values are used as the starting values for the fit in the next section.

Nonlinear
Fit Output

Dataplot generated the following output for the nonlinear fit. The output has been edited for
display.

LEAST SQUARES NON-LINEAR FIT
SAMPLE SIZE N =      236
MODEL--THERMEXP =(A0+A1*TEMP+A2*TEMP**2+A3*TEMP**3)/
                 (1+B1*TEMP+B2*TEMP**2+B3*TEMP**3)
REPLICATION CASE
REPLICATION STANDARD DEVIATION =     0.8131711930D-01
REPLICATION DEGREES OF FREEDOM =           1
NUMBER OF DISTINCT SUBSETS     =         235
  
FINAL PARAMETER ESTIMATES           (APPROX. ST. DEV.)    T VALUE
1  A0                   1.07913       (0.1710    )          6.3
2  A1                 -0.122801       (0.1203E-01)         -10.
3  A2                  0.408837E-02   (0.2252E-03)          18.
4  A3                 -0.142848E-05   (0.2610E-06)         -5.5
5  B1                 -0.576111E-02   (0.2468E-03)         -23.
6  B2                  0.240629E-03   (0.1060E-04)          23.
7  B3                 -0.123254E-06   (0.1217E-07)         -10.

RESIDUAL    STANDARD DEVIATION =         0.0818038210
RESIDUAL    DEGREES OF FREEDOM =         229
REPLICATION STANDARD DEVIATION =         0.0813171193
REPLICATION DEGREES OF FREEDOM =           1
LACK OF FIT F RATIO =       1.0121 = THE  32.1265% POINT OF THE
F DISTRIBUTION WITH    228 AND      1 DEGREES OF FREEDOM

     

The above output yields the following estimated model.

4.6.4.5. Cubic/Cubic Rational Function Model
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Plot of
C/C
Rational
Function
Fit

We generate a plot of the fitted rational function model with the raw data.

The fitted function with the raw data appears to show a reasonable fit.

6-Plot for
Model
Validation

Although the plot of the fitted function with the raw data appears to show a reasonable fit, we
need to validate the model assumptions. The 6-plot is an effective tool for this purpose.

4.6.4.5. Cubic/Cubic Rational Function Model
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The 6-plot indicates no significant violation of the model assumptions. That is, the errors appear
to have constant location and scale (from the residual plot in row 1, column 2), seem to be
random (from the lag plot in row 2, column 1), and approximated well by a normal distribution
(from the histogram and normal probability plots in row 2, columns 2 and 3).

Residual
Plot

We generate a full-sized residual plot in order to show more detail.

4.6.4.5. Cubic/Cubic Rational Function Model
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The full-sized residual plot suggests that the assumptions of constant location and scale for the
errors are valid. No distinguishing pattern is evident in the residuals.

Conclusion We conclude that the cubic/cubic rational function model does in fact provide a satisfactory
model for this data set.

4.6.4.5. Cubic/Cubic Rational Function Model
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.4. Thermal Expansion of Copper Case Study

4.6.4.6.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot, if you have
downloaded and installed it. Output from each analysis step below will
be displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case
study yourself. Each step may use results from previous
steps, so please be patient. Wait until the software verifies
that the current step is complete before clicking on the next
step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 2 columns of numbers 
    into Dataplot, variables thermexp
    and temp.

2. Plot the data.

   1. Plot thermexp versus temp.  1. Initial plot indicates that a
    nonlinear model is required.

4.6.4.6. Work This Example Yourself
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4. Fit a Q/Q rational function model.

   1. Perform the Q/Q fit and plot the
      predicted values with the raw data.

   2. Perform model validation by
      generating a 6-plot.

   3. Generate a full-sized plot of the
      residuals to show greater detail.

 1. The model parameters are estimated.
    The plot of the predicted values with
    the raw data seems to indicate a 
    reasonable fit.

 2. The 6-plot shows that the 
    residuals follow a distinct
    pattern and suggests that the 
    randomness assumption for the 
    errors is violated.

 3. The full-sized residual plot shows
    the non-random pattern more
    clearly.

3. Fit a C/C rational function model.

   1. Perform the C/C fit and plot the
      predicted values with the raw data.

   2. Perform model validation by
      generating a 6-plot.

   3. Generate a full-sized plot of the
      residuals to show greater detail.

 1. The model parameters are estimated.
    The plot of the predicted values with
    the raw data seems to indicate a 
    reasonable fit.

 2. The 6-plot does not indicate any
    notable violations of the
    assumptions.

 3. The full-sized residual plot shows
    no notable assumption violations.

4.6.4.6. Work This Example Yourself
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4. Process Modeling

4.8.Some Useful Functions for Process
Modeling

Overview of
Section 4.8

This section lists some functions commonly-used for process modeling.
Constructing an exhaustive list of useful functions is impossible, of
course, but the functions given here will often provide good starting
points when an empirical model must be developed to describe a
particular process.

Each function listed here is classified into a family of related functions,
if possible. Its statistical type, linear or nonlinear in the parameters, is
also given. Special features of each function, such as asymptotes, are
also listed along with the function's domain (the set of allowable input
values) and range (the set of possible output values). Plots of some of
the different shapes that each function can assume are also included.

Contents of
Section 4.8

Univariate Functions

Polynomials1.  

Rational Functions2.  

1.  

4.8. Some Useful Functions for Process Modeling
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling

4.8.1.Univariate Functions

Overview of
Section 8.1

Univariate functions are listed in this section. They are useful for
modeling in their own right and they can serve as the basic building
blocks for functions of higher dimension. Section 4.4.2.1 offers some
advice on the development of empirical models for higher-dimension
processes from univariate functions.

Contents of
Section 8.1

Polynomials1.  

Rational Functions2.  

4.8.1. Univariate Functions
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions

4.8.1.1.Polynomial Functions

Polynomial
Functions

A polynomial function is one that has the form

with n denoting a non-negative integer that defines the degree of the
polynomial. A polynomial with a degree of 0 is simply a constant, with a
degree of 1 is a line, with a degree of 2 is a quadratic, with a degree of 3 is a
cubic, and so on.

Polynomial
Models:
Advantages

Historically, polynomial models are among the most frequently used
empirical models for fitting functions. These models are popular for the
following reasons.

Polynomial models have a simple form.1.  

Polynomial models have well known and understood properties.2.  

Polynomial models have moderate flexibility of shapes.3.  

Polynomial models are a closed family. Changes of location and scale
in the raw data result in a polynomial model being mapped to a
polynomial model. That is, polynomial models are not dependent on
the underlying metric.

4.  

Polynomial models are computationally easy to use.5.  

4.8.1.1. Polynomial Functions
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Polynomial
Model:
Limitations

However, polynomial models also have the following limitations.

Polynomial models have poor interpolatory properties. High degree
polynomials are notorious for oscillations between exact-fit values.

1.  

Polynomial models have poor extrapolatory properties. Polynomials
may provide good fits within the range of data, but they will
frequently deteriorate rapidly outside the range of the data.

2.  

Polynomial models have poor asymptotic properties. By their nature,
polynomials have a finite response for finite  values and have an
infinite response if and only if the  value is infinite. Thus
polynomials may not model asympototic phenomena very well.

3.  

Polynomial models have a shape/degree tradeoff. In order to model
data with a complicated structure, the degree of the model must be
high, indicating and the associated number of parameters to be
estimated will also be high. This can result in highly unstable models.

4.  

Example The load cell calibration case study contains an example of fitting a
quadratic polynomial model.

Specific
Polynomial
Functions

Straight Line1.  

Quadratic Polynomial2.  

Cubic Polynomial3.  

4.8.1.1. Polynomial Functions
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.1. Polynomial Functions

4.8.1.1.1.Straight Line

Function:

Function
Family: Polynomial

4.8.1.1.1. Straight Line
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Statistical
Type: Linear

Domain:

Range:

Special
Features: None

Additional
Examples: None

4.8.1.1.1. Straight Line
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.1. Polynomial Functions

4.8.1.1.2.Quadratic Polynomial

Function:

Function
Family: Polynomial

4.8.1.1.2. Quadratic Polynomial
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Statistical
Type: Linear

Domain:

Range:

Special
Features: None

Additional
Examples:

4.8.1.1.2. Quadratic Polynomial
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4.8.1.1.2. Quadratic Polynomial
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.1. Polynomial Functions

4.8.1.1.3.Cubic Polynomial

Function:

Function
Family: Polynomial

4.8.1.1.3. Cubic Polynomial
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Statistical
Type: Linear

Domain:

Range:

Special
Features: None

Additional
Examples:

4.8.1.1.3. Cubic Polynomial
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions

4.8.1.2.Rational Functions

Rational
Functions

A rational function is simply the ratio of two polynomial functions

with n denoting a non-negative integer that defines the degree of the
numerator and m denoting a non-negative integer that defines the degree of
the denominator. When fitting rational function models, the constant term in
the denominator is usually set to 1.

Rational functions are typically identified by the degrees of the numerator
and denominator. For example, a quadratic for the numerator and a cubic for
the denominator is identified as a quadratic/cubic rational function.

Rational
Function
Models

A rational function model is a generalization of the polynomial model.
Rational function models contain polynomial models as a subset (i.e., the
case when the denominator is a constant).

If modeling via polynomial models is inadequate due to any of the
limitations above, you should consider a rational function model.

Note that fitting rational function models is also referred to as the Pade
approximation.

4.8.1.2. Rational Functions
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Advantages Rational function models have the following advantages.

Rational function models have a moderately simple form.1.  

Rational function models are a closed family. As with polynomial
models, this means that rational function models are not dependent on
the underlying metric.

2.  

Rational function models can take on an extremely wide range of
shapes, accommodating a much wider range of shapes than does the
polynomial family.

3.  

Rational function models have better interpolatory properties than
polynomial models. Rational functions are typically smoother and less
oscillatory than polynomial models.

4.  

Rational functions have excellent extrapolatory powers. Rational
functions can typically be tailored to model the function not only
within the domain of the data, but also so as to be in agreement with
theoretical/asymptotic behavior outside the domain of interest.

5.  

Rational function models have excellent asymptotic properties.
Rational functions can be either finite or infinite for finite values, or
finite or infinite for infinite  values. Thus, rational functions can
easily be incorporated into a rational function model.

6.  

Rational function models can often be used to model complicated
structure with a fairly low degree in both the numerator and
denominator. This in turn means that fewer coefficients will be
required compared to the polynomial model.

7.  

Rational function models are moderately easy to handle
computationally. Although they are nonlinear models, rational
function models are a particularly easy nonlinear models to fit.

8.  

Disadvantages Rational function models have the following disadvantages.

The properties of the rational function family are not as well known to
engineers and scientists as are those of the polynomial family. The
literature on the rational function family is also more limited. Because
the properties of the family are often not well understood, it can be
difficult to answer the following modeling question:

Given that data has a certain shape, what values should be
chosen for the degree of the numerator and the degree on the
denominator?

1.  

Unconstrained rational function fitting can, at times, result in
undesired nusiance asymptotes (vertically) due to roots in the
denominator polynomial. The range of  values affected by the
function "blowing up" may be quite narrow, but such asymptotes,
when they occur, are a nuisance for local interpolation in the
neighborhood of the asymptote point. These asymptotes are easy to

2.  

4.8.1.2. Rational Functions
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detect by a simple plot of the fitted function over the range of the
data. Such asymptotes should not discourage you from considering
rational function models as a choice for empirical modeling. These
nuisance asymptotes occur occasionally and unpredictably, but the
gain in flexibility of shapes is well worth the chance that they may
occur.

General
Properties of
Rational
Functions

The following are general properties of rational functions.

If the numerator and denominator are of the same degree (n=m), then
y = an/bm is a horizontal asymptote of the function.

●   

If the degree of the denominator is greater than the degree of the
numerator, then y = 0 is a horizontal asymptote.

●   

If the degree of the denominator is less than the degree of the
numerator, then there are no horizontal asymptotes.

●   

When x is equal to a root of the denominator polynomial, the
denominator is zero and there is a vertical asymptote. The exception
is the case when the root of the denominator is also a root of the
numerator. However, for this case we can cancel a factor from both
the numerator and denominator (and we effectively have a
lower-degree rational function).

●   

Starting
Values for
Rational
Function
Models

One common difficulty in fitting nonlinear models is finding adequate
starting values. A major advantage of rational function models is the ability
to compute starting values using a linear least squares fit.

To do this, choose p points from the data set, with p denoting the number of
parameters in the rational model. For example, given the linear/quadratic
model

we need to select four representative points.

We then perform a linear fit on the model

Here, pn and pd are the degrees of the numerator and denominator,
respectively, and the  and Y contain the subset of points, not the full data
set. The estimated coefficients from this fit made using the linear least
squares algorithm are used as the starting values for fitting the nonlinear
model to the full data set.

Note: This type of fit, with the response variable appearing on both sides of
the function, should only be used to obtain starting values for the nonlinear
fit. The statistical properties of models like this are not well understood.

4.8.1.2. Rational Functions
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The subset of points should be selected over the range of the data. It is not
critical which points are selected, although you should avoid points that are
obvious outliers.

Example The thermal expansion of copper case study contains an example of fitting a
rational function model.

Specific
Rational
Functions

Constant / Linear Rational Function1.  

Linear / Linear Rational Function2.  

Linear / Quadratic Rational Function3.  

Quadratic / Linear Rational Function4.  

Quadratic / Quadratic Rational Function5.  

Cubic / Linear Rational Function6.  

Cubic / Quadratic Rational Function7.  

Linear / Cubic Rational Function8.  

Quadratic / Cubic Rational Function9.  

Cubic / Cubic Rational Function10.  

Determining m and n for Rational Function Models11.  

4.8.1.2. Rational Functions
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.1.Constant / Linear Rational
Function

Function:

4.8.1.2.1. Constant / Linear Rational Function
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

Range:

Special
Features: Horizontal asymptote at:

and vertical asymptote at:

Additional
Examples:

4.8.1.2.1. Constant / Linear Rational Function
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4.8.1.2.1. Constant / Linear Rational Function
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4.8.1.2.1. Constant / Linear Rational Function
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.2.Linear / Linear Rational Function

Function:

4.8.1.2.2. Linear / Linear Rational Function
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

Range:

Special
Features: Horizontal asymptote at:

and vertical asymptote at:

Additional
Examples:

4.8.1.2.2. Linear / Linear Rational Function
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4.8.1.2.2. Linear / Linear Rational Function

http://www.itl.nist.gov/div898/handbook/pmd/section8/pmd8122.htm (3 of 6) [11/14/2003 5:51:12 PM]

http://www.itl.nist.gov/div898/handbook/pmd/section8/plots/r11p2.gif


4.8.1.2.2. Linear / Linear Rational Function
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.3.Linear / Quadratic Rational
Function

Function:

4.8.1.2.3. Linear / Quadratic Rational Function
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Function
Family:

Rational

Statistical
Type:

Nonlinear

Domain:

with undefined points at

There will be 0, 1, or 2 real solutions to this equation, corresponding to whether

is negative, zero, or positive.

Range:

Special
Features:

Horizontal asymptote at:

and vertical asymptotes at:

There will be 0, 1, or 2 real solutions to this equation corresponding to whether

is negative, zero, or positive.

Additional
Examples:

4.8.1.2.3. Linear / Quadratic Rational Function
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4.8.1.2.3. Linear / Quadratic Rational Function
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4.8.1.2.3. Linear / Quadratic Rational Function
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.4.Quadratic / Linear Rational
Function

Function:

4.8.1.2.4. Quadratic / Linear Rational Function
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Function
Family:

Rational

Statistical
Type: Nonlinear

Domain:

Range:

with

and

Special
Features:

Vertical asymptote at:

Additional
Examples:

4.8.1.2.4. Quadratic / Linear Rational Function
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4.8.1.2.4. Quadratic / Linear Rational Function
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4.8.1.2.4. Quadratic / Linear Rational Function
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4.8.1.2.4. Quadratic / Linear Rational Function
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.5.Quadratic / Quadratic Rational
Function

Function:

4.8.1.2.5. Quadratic / Quadratic Rational Function
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Function
Family:

Rational

Statistical
Type:

Nonlinear

Domain:

with undefined points at

There will be 0, 1, or 2 real solutions to this equation corresponding to whether

is negative, zero, or positive.

Range: The range is complicated and depends on the specific values of 1, ..., 5.

Special
Features:

Horizontal asymptotes at:

and vertical asymptotes at:

There will be 0, 1, or 2 real solutions to this equation corresponding to whether

is negative, zero, or positive.

Additional
Examples:

4.8.1.2.5. Quadratic / Quadratic Rational Function
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4.8.1.2.5. Quadratic / Quadratic Rational Function
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.6.Cubic / Linear Rational Function

Function:

4.8.1.2.6. Cubic / Linear Rational Function
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

Range:

Special
Features: Vertical asymptote at:

Additional
Examples:

4.8.1.2.6. Cubic / Linear Rational Function
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4.8.1.2.6. Cubic / Linear Rational Function
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4.8.1.2.6. Cubic / Linear Rational Function
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4.8.1.2.6. Cubic / Linear Rational Function
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.7.Cubic / Quadratic Rational
Function

Function:

4.8.1.2.7. Cubic / Quadratic Rational Function
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

with undefined points at

There will be 0, 1, or 2 real solutions to this equation corresponding to whether

is negative, zero, or positive.

Range:

Special
Features:

Vertical asymptotes at:

There will be 0, 1, or 2 real solutions to this equation corresponding to whether

is negative, zero, or positive.

Additional
Examples:

4.8.1.2.7. Cubic / Quadratic Rational Function
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4.8.1.2.7. Cubic / Quadratic Rational Function
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http://www.itl.nist.gov/div898/handbook/pmd/section8/pmd8127.htm (6 of 6) [11/14/2003 5:51:15 PM]

http://www.itl.nist.gov/div898/handbook/pmd/section8/plots/r32p5.gif
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/


4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.8.Linear / Cubic Rational Function

Function:

4.8.1.2.8. Linear / Cubic Rational Function
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

with undefined points at the roots of

There will be 1, 2, or 3 roots, depending on the particular values of the parameters.
Explicit solutions for the roots of a cubic polynomial are complicated and are not
given here. Many mathematical and statistical software programs can determine the
roots of a polynomial equation numerically, and it is recommended that you use one
of these programs if you need to know where these roots occur.

Range:

with the possible exception that zero may be excluded.

Special
Features:

Horizontal asymptote at:

and vertical asymptotes at the roots of

There will be 1, 2, or 3 roots, depending on the particular values of the parameters.
Explicit solutions for the roots of a cubic polynomial are complicated and are not
given here. Many mathematical and statistical software programs can determine the
roots of a polynomial equation numerically, and it is recommended that you use one
of these programs if you need to know where these roots occur.

Additional
Examples:

4.8.1.2.8. Linear / Cubic Rational Function
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4.8.1.2.8. Linear / Cubic Rational Function
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4.8.1.2.8. Linear / Cubic Rational Function
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4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.9.Quadratic / Cubic Rational
Function

Function:

4.8.1.2.9. Quadratic / Cubic Rational Function
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

with undefined points at the roots of

There will be 1, 2, or 3 roots, depending on the particular values of the parameters.
Explicit solutions for the roots of a cubic polynomial are complicated and are not
given here. Many mathematical and statistical software programs can determine the
roots of a polynomial equation numerically, and it is recommended that you use one
of these programs if you need to know where these roots occur.

Range:

with the possible exception that zero may be excluded.

Special
Features:

Horizontal asymptote at:

and vertical asymptotes at the roots of

There will be 1, 2, or 3 roots, depending on the particular values of the parameters.
Explicit solutions for the roots of a cubic polynomial are complicated and are not
given here. Many mathematical and statistical software programs can determine the
roots of a polynomial equation numerically, and it is recommended that you use one
of these programs if you need to know where these roots occur.

Additional
Examples:
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Function
Family: Rational

Statistical
Type: Nonlinear

Domain:

with undefined points at the roots of

There will be 1, 2, or 3 roots, depending on the particular values of the parameters.
Explicit solutions for the roots of a cubic polynomial are complicated and are not
given here. Many mathematical and statistical software programs can determine the
roots of a polynomial equation numerically, and it is recommended that you use one
of these programs if you need to know where these roots occur.

Range:

with the exception that y =  may be excluded.

Special
Features:

Horizontal asymptote at:

and vertical asymptotes at the roots of

There will be 1, 2, or 3 roots, depending on the particular values of the parameters.
Explicit solutions for the roots of a cubic polynomial are complicated and are not
given here. Many mathematical and statistical software programs can determine the
roots of a polynomial equation numerically, and it is recommended that you use one
of these programs if you need to know where these roots occur.

Additional
Examples:
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4.8. Some Useful Functions for Process Modeling
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4.8.1.2.11.Determining m and n for Rational
Function Models

General
Question

A general question for rational function models is:

I have data to which I wish to fit a rational function to. What degrees n and m should I use
for the numerator and denominator, respectively?

Four
Questions

To answer the above broad question, the following four specific questions need to be answered.

What value should the function have at x = ? Specifically, is the value zero, a constant,
or plus or minus infinity?

1.  

What slope should the function have at x = ? Specifically, is the derivative of the
function zero, a constant, or plus or minus infinity?

2.  

How many times should the function equal zero (i.e., f (x) = 0) for finite x?3.  

How many times should the slope equal zero (i.e., f '(x) = 0) for finite x?4.  

These questions are answered by the analyst by inspection of the data and by theoretical
considerations of the phenomenon under study.

Each of these questions is addressed separately below.

Question 1:
What Value
Should the
Function
Have at x =

?

Given the rational function

or

then asymptotically

From this it follows that

if n < m, R( ) = 0●   

if n = m, R( ) = an/bm●   

if n > m, R( ) = ●   

Conversely, if the fitted function f(x) is such that
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f( ) = 0, this implies n < m●   

f( ) = constant, this implies n = m●   

f( ) = , this implies n > m●   

Question 2:
What Slope
Should the
Function
Have at x =

?

The slope is determined by the derivative of a function. The derivative of a rational function is

with

Asymptotically

From this it follows that

if n < m, R'( ) = 0●   

if n = m, R'( ) = 0●   

if n = m +1, R'( ) = an/bm●   

if n > m + 1, R'( ) = ●   

Conversely, if the fitted function f(x) is such that

f'( ) = 0, this implies n  m●   

f'( ) = constant, this implies n = m + 1●   

f'( ) = , this implies n > m + 1●   

Question 3:
How Many
Times Should
the Function
Equal Zero
for Finite ?

For fintite x, R(x) = 0 only when the numerator polynomial, Pn, equals zero.

The numerator polynomial, and thus R(x) as well, can have between zero and n real roots. Thus,
for a given n, the number of real roots of R(x) is less than or equal to n.

Conversely, if the fitted function f(x) is such that, for finite x, the number of times f(x) = 0 is k3,
then n is greater than or equal to k3.
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Question 4:
How Many
Times Should
the Slope
Equal Zero
for Finite ?

The derivative function, R'(x), of the rational function will equal zero when the numerator
polynomial equals zero. The number of real roots of a polynomial is between zero and the degree
of the polynomial.

For n not equal to m, the numerator polynomial of R'(x) has order n+m-1. For n equal to m, the
numerator polynomial of R'(x) has order n+m-2.

From this it follows that

if n  m, the number of real roots of R'(x), k4,  n+m-1.●   

if n = m, the number of real roots of R'(x), k4, is  n+m-2.●   

Conversely, if the fitted function f(x) is such that, for finite x and n  m, the number of times f'(x)
= 0 is k4, then n+m-1 is  k4. Similarly, if the fitted function f(x) is such that, for finite x and n =
m, the number of times f'(x) = 0 is k4, then n+m-2  k4.

Tables for
Determining
Admissible
Combinations
of m and n

In summary, we can determine the admissible combinations of n and m by using the following
four tables to generate an n versus m graph. Choose the simplest (n,m) combination for the
degrees of the intial rational function model.

1. Desired value of f( ) Relation of n to m

0
constant

n < m
n = m
n > m

2. Desired value of f'( ) Relation of n to m

0
constant

n < m + 1
n = m +1
n > m + 1

3. For finite x, desired number, k3,
of times f(x) = 0

Relation of n to k3

k3 n  k3

4. For finite x, desired number, k4,
of times f'(x) = 0

Relation of n to k4 and m

k4 (n  m)
k4 (n = m)

n  (1 + k4) - m
n  (2 + k4) - m

4.8.1.2.11. Determining m and n for Rational Function Models
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Examples for
Determing m
and n

The goal is to go from a sample data set to a specific rational function. The graphs below
summarize some common shapes that rational functions can have and shows the admissible
values and the simplest case for n and m. We typically start with the simplest case. If the model
validation indicates an inadequate model, we then try other rational functions in the admissible
region.

Shape 1

Shape 2
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Shape 3
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